Robust Multisensor Image Matching Using Bayesian Estimated Mutual Information
Mutual information (MI) has been widely used in multisensor image matching, but it may lead to mismatch among images with messy background. However, additional prior information can be of great help in improving the matching performance. In this paper, a robust Bayesian estimated mutual information,...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-06, Vol.321-324, p.541-548 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 548 |
---|---|
container_issue | |
container_start_page | 541 |
container_title | Applied Mechanics and Materials |
container_volume | 321-324 |
creator | Huang, Xin Sheng Xu, Wan Ying Shen, Lu Rong Zheng, Yong Bin Yan, Yu Zhuang |
description | Mutual information (MI) has been widely used in multisensor image matching, but it may lead to mismatch among images with messy background. However, additional prior information can be of great help in improving the matching performance. In this paper, a robust Bayesian estimated mutual information, named as BMI, for multisensor image matching is proposed. This method has been implemented by utilizing the gradient prior information, in which the prior is estimate by the kernel density estimate (KDE) method, and the likelihood is modeled according to the distance of orientations. To further improve the robustness, we restrict the matching within the regions where the corresponding pixels of template image are salient enough. Experiments on several groups of multisensor images show that the proposed method outperforms the standard MI in robustness and accuracy and is similar with Pluims method. However, our computation is far more cost saving. |
doi_str_mv | 10.4028/www.scientific.net/AMM.321-324.541 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442444260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100832711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e231b868711ef3dfd33631adb72f85c0df511fad3f15e73944a024b4b6bc15cc3</originalsourceid><addsrcrecordid>eNqNkNtKAzEQhoMH0FbfYcE7Ybc5bTa9rFq10EUQex2y2aRNabM1yVL69qZW0EsvZgbm8P_DB8A9ggWFmI_2-30RlNUuWmNV4XQcTeq6IBjlBNOipOgMXCPGcF5Rjs_BgEBS8ZKNaXXxPYD5mBB2BQYhrCFkFFF-Der3rulDzOp-E23QLnQ-m23lUme1jGpl3TJbhGN-kAcdrHTZNES7lVG36Sb2cpPNnOl86tjO3YBLIzdB3_7UIVg8Tz8eX_P528vscTLPFWE85hoT1HDGK4S0Ia1p018EybapsOGlgq0pETKyJQaVuiJjSiXEtKENaxQqlSJDcHfS3fnus9chinXXe5csBaIU0xQMpq2H05byXQheG7Hz6XV_EAiKI1ORmIpfpiIxFYmpSExTUJGYJpGnk0j00oWo1eqP1_9lvgDVUohc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442444260</pqid></control><display><type>article</type><title>Robust Multisensor Image Matching Using Bayesian Estimated Mutual Information</title><source>Scientific.net Journals</source><creator>Huang, Xin Sheng ; Xu, Wan Ying ; Shen, Lu Rong ; Zheng, Yong Bin ; Yan, Yu Zhuang</creator><creatorcontrib>Huang, Xin Sheng ; Xu, Wan Ying ; Shen, Lu Rong ; Zheng, Yong Bin ; Yan, Yu Zhuang</creatorcontrib><description>Mutual information (MI) has been widely used in multisensor image matching, but it may lead to mismatch among images with messy background. However, additional prior information can be of great help in improving the matching performance. In this paper, a robust Bayesian estimated mutual information, named as BMI, for multisensor image matching is proposed. This method has been implemented by utilizing the gradient prior information, in which the prior is estimate by the kernel density estimate (KDE) method, and the likelihood is modeled according to the distance of orientations. To further improve the robustness, we restrict the matching within the regions where the corresponding pixels of template image are salient enough. Experiments on several groups of multisensor images show that the proposed method outperforms the standard MI in robustness and accuracy and is similar with Pluims method. However, our computation is far more cost saving.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037856947</identifier><identifier>ISBN: 9783037856949</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.321-324.541</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-06, Vol.321-324, p.541-548</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e231b868711ef3dfd33631adb72f85c0df511fad3f15e73944a024b4b6bc15cc3</citedby><cites>FETCH-LOGICAL-c368t-e231b868711ef3dfd33631adb72f85c0df511fad3f15e73944a024b4b6bc15cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2388?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Xin Sheng</creatorcontrib><creatorcontrib>Xu, Wan Ying</creatorcontrib><creatorcontrib>Shen, Lu Rong</creatorcontrib><creatorcontrib>Zheng, Yong Bin</creatorcontrib><creatorcontrib>Yan, Yu Zhuang</creatorcontrib><title>Robust Multisensor Image Matching Using Bayesian Estimated Mutual Information</title><title>Applied Mechanics and Materials</title><description>Mutual information (MI) has been widely used in multisensor image matching, but it may lead to mismatch among images with messy background. However, additional prior information can be of great help in improving the matching performance. In this paper, a robust Bayesian estimated mutual information, named as BMI, for multisensor image matching is proposed. This method has been implemented by utilizing the gradient prior information, in which the prior is estimate by the kernel density estimate (KDE) method, and the likelihood is modeled according to the distance of orientations. To further improve the robustness, we restrict the matching within the regions where the corresponding pixels of template image are salient enough. Experiments on several groups of multisensor images show that the proposed method outperforms the standard MI in robustness and accuracy and is similar with Pluims method. However, our computation is far more cost saving.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037856947</isbn><isbn>9783037856949</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkNtKAzEQhoMH0FbfYcE7Ybc5bTa9rFq10EUQex2y2aRNabM1yVL69qZW0EsvZgbm8P_DB8A9ggWFmI_2-30RlNUuWmNV4XQcTeq6IBjlBNOipOgMXCPGcF5Rjs_BgEBS8ZKNaXXxPYD5mBB2BQYhrCFkFFF-Der3rulDzOp-E23QLnQ-m23lUme1jGpl3TJbhGN-kAcdrHTZNES7lVG36Sb2cpPNnOl86tjO3YBLIzdB3_7UIVg8Tz8eX_P528vscTLPFWE85hoT1HDGK4S0Ia1p018EybapsOGlgq0pETKyJQaVuiJjSiXEtKENaxQqlSJDcHfS3fnus9chinXXe5csBaIU0xQMpq2H05byXQheG7Hz6XV_EAiKI1ORmIpfpiIxFYmpSExTUJGYJpGnk0j00oWo1eqP1_9lvgDVUohc</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Huang, Xin Sheng</creator><creator>Xu, Wan Ying</creator><creator>Shen, Lu Rong</creator><creator>Zheng, Yong Bin</creator><creator>Yan, Yu Zhuang</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130601</creationdate><title>Robust Multisensor Image Matching Using Bayesian Estimated Mutual Information</title><author>Huang, Xin Sheng ; Xu, Wan Ying ; Shen, Lu Rong ; Zheng, Yong Bin ; Yan, Yu Zhuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e231b868711ef3dfd33631adb72f85c0df511fad3f15e73944a024b4b6bc15cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xin Sheng</creatorcontrib><creatorcontrib>Xu, Wan Ying</creatorcontrib><creatorcontrib>Shen, Lu Rong</creatorcontrib><creatorcontrib>Zheng, Yong Bin</creatorcontrib><creatorcontrib>Yan, Yu Zhuang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xin Sheng</au><au>Xu, Wan Ying</au><au>Shen, Lu Rong</au><au>Zheng, Yong Bin</au><au>Yan, Yu Zhuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Multisensor Image Matching Using Bayesian Estimated Mutual Information</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>321-324</volume><spage>541</spage><epage>548</epage><pages>541-548</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037856947</isbn><isbn>9783037856949</isbn><abstract>Mutual information (MI) has been widely used in multisensor image matching, but it may lead to mismatch among images with messy background. However, additional prior information can be of great help in improving the matching performance. In this paper, a robust Bayesian estimated mutual information, named as BMI, for multisensor image matching is proposed. This method has been implemented by utilizing the gradient prior information, in which the prior is estimate by the kernel density estimate (KDE) method, and the likelihood is modeled according to the distance of orientations. To further improve the robustness, we restrict the matching within the regions where the corresponding pixels of template image are salient enough. Experiments on several groups of multisensor images show that the proposed method outperforms the standard MI in robustness and accuracy and is similar with Pluims method. However, our computation is far more cost saving.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.321-324.541</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2013-06, Vol.321-324, p.541-548 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442444260 |
source | Scientific.net Journals |
title | Robust Multisensor Image Matching Using Bayesian Estimated Mutual Information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Multisensor%20Image%20Matching%20Using%20Bayesian%20Estimated%20Mutual%20Information&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Huang,%20Xin%20Sheng&rft.date=2013-06-01&rft.volume=321-324&rft.spage=541&rft.epage=548&rft.pages=541-548&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037856947&rft.isbn_list=9783037856949&rft_id=info:doi/10.4028/www.scientific.net/AMM.321-324.541&rft_dat=%3Cproquest_cross%3E3100832711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442444260&rft_id=info:pmid/&rfr_iscdi=true |