Robust Multisensor Image Matching Using Bayesian Estimated Mutual Information

Mutual information (MI) has been widely used in multisensor image matching, but it may lead to mismatch among images with messy background. However, additional prior information can be of great help in improving the matching performance. In this paper, a robust Bayesian estimated mutual information,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-06, Vol.321-324, p.541-548
Hauptverfasser: Huang, Xin Sheng, Xu, Wan Ying, Shen, Lu Rong, Zheng, Yong Bin, Yan, Yu Zhuang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 548
container_issue
container_start_page 541
container_title Applied Mechanics and Materials
container_volume 321-324
creator Huang, Xin Sheng
Xu, Wan Ying
Shen, Lu Rong
Zheng, Yong Bin
Yan, Yu Zhuang
description Mutual information (MI) has been widely used in multisensor image matching, but it may lead to mismatch among images with messy background. However, additional prior information can be of great help in improving the matching performance. In this paper, a robust Bayesian estimated mutual information, named as BMI, for multisensor image matching is proposed. This method has been implemented by utilizing the gradient prior information, in which the prior is estimate by the kernel density estimate (KDE) method, and the likelihood is modeled according to the distance of orientations. To further improve the robustness, we restrict the matching within the regions where the corresponding pixels of template image are salient enough. Experiments on several groups of multisensor images show that the proposed method outperforms the standard MI in robustness and accuracy and is similar with Pluims method. However, our computation is far more cost saving.
doi_str_mv 10.4028/www.scientific.net/AMM.321-324.541
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442444260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100832711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e231b868711ef3dfd33631adb72f85c0df511fad3f15e73944a024b4b6bc15cc3</originalsourceid><addsrcrecordid>eNqNkNtKAzEQhoMH0FbfYcE7Ybc5bTa9rFq10EUQex2y2aRNabM1yVL69qZW0EsvZgbm8P_DB8A9ggWFmI_2-30RlNUuWmNV4XQcTeq6IBjlBNOipOgMXCPGcF5Rjs_BgEBS8ZKNaXXxPYD5mBB2BQYhrCFkFFF-Der3rulDzOp-E23QLnQ-m23lUme1jGpl3TJbhGN-kAcdrHTZNES7lVG36Sb2cpPNnOl86tjO3YBLIzdB3_7UIVg8Tz8eX_P528vscTLPFWE85hoT1HDGK4S0Ia1p018EybapsOGlgq0pETKyJQaVuiJjSiXEtKENaxQqlSJDcHfS3fnus9chinXXe5csBaIU0xQMpq2H05byXQheG7Hz6XV_EAiKI1ORmIpfpiIxFYmpSExTUJGYJpGnk0j00oWo1eqP1_9lvgDVUohc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442444260</pqid></control><display><type>article</type><title>Robust Multisensor Image Matching Using Bayesian Estimated Mutual Information</title><source>Scientific.net Journals</source><creator>Huang, Xin Sheng ; Xu, Wan Ying ; Shen, Lu Rong ; Zheng, Yong Bin ; Yan, Yu Zhuang</creator><creatorcontrib>Huang, Xin Sheng ; Xu, Wan Ying ; Shen, Lu Rong ; Zheng, Yong Bin ; Yan, Yu Zhuang</creatorcontrib><description>Mutual information (MI) has been widely used in multisensor image matching, but it may lead to mismatch among images with messy background. However, additional prior information can be of great help in improving the matching performance. In this paper, a robust Bayesian estimated mutual information, named as BMI, for multisensor image matching is proposed. This method has been implemented by utilizing the gradient prior information, in which the prior is estimate by the kernel density estimate (KDE) method, and the likelihood is modeled according to the distance of orientations. To further improve the robustness, we restrict the matching within the regions where the corresponding pixels of template image are salient enough. Experiments on several groups of multisensor images show that the proposed method outperforms the standard MI in robustness and accuracy and is similar with Pluims method. However, our computation is far more cost saving.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037856947</identifier><identifier>ISBN: 9783037856949</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.321-324.541</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-06, Vol.321-324, p.541-548</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e231b868711ef3dfd33631adb72f85c0df511fad3f15e73944a024b4b6bc15cc3</citedby><cites>FETCH-LOGICAL-c368t-e231b868711ef3dfd33631adb72f85c0df511fad3f15e73944a024b4b6bc15cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2388?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Xin Sheng</creatorcontrib><creatorcontrib>Xu, Wan Ying</creatorcontrib><creatorcontrib>Shen, Lu Rong</creatorcontrib><creatorcontrib>Zheng, Yong Bin</creatorcontrib><creatorcontrib>Yan, Yu Zhuang</creatorcontrib><title>Robust Multisensor Image Matching Using Bayesian Estimated Mutual Information</title><title>Applied Mechanics and Materials</title><description>Mutual information (MI) has been widely used in multisensor image matching, but it may lead to mismatch among images with messy background. However, additional prior information can be of great help in improving the matching performance. In this paper, a robust Bayesian estimated mutual information, named as BMI, for multisensor image matching is proposed. This method has been implemented by utilizing the gradient prior information, in which the prior is estimate by the kernel density estimate (KDE) method, and the likelihood is modeled according to the distance of orientations. To further improve the robustness, we restrict the matching within the regions where the corresponding pixels of template image are salient enough. Experiments on several groups of multisensor images show that the proposed method outperforms the standard MI in robustness and accuracy and is similar with Pluims method. However, our computation is far more cost saving.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037856947</isbn><isbn>9783037856949</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkNtKAzEQhoMH0FbfYcE7Ybc5bTa9rFq10EUQex2y2aRNabM1yVL69qZW0EsvZgbm8P_DB8A9ggWFmI_2-30RlNUuWmNV4XQcTeq6IBjlBNOipOgMXCPGcF5Rjs_BgEBS8ZKNaXXxPYD5mBB2BQYhrCFkFFF-Der3rulDzOp-E23QLnQ-m23lUme1jGpl3TJbhGN-kAcdrHTZNES7lVG36Sb2cpPNnOl86tjO3YBLIzdB3_7UIVg8Tz8eX_P528vscTLPFWE85hoT1HDGK4S0Ia1p018EybapsOGlgq0pETKyJQaVuiJjSiXEtKENaxQqlSJDcHfS3fnus9chinXXe5csBaIU0xQMpq2H05byXQheG7Hz6XV_EAiKI1ORmIpfpiIxFYmpSExTUJGYJpGnk0j00oWo1eqP1_9lvgDVUohc</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Huang, Xin Sheng</creator><creator>Xu, Wan Ying</creator><creator>Shen, Lu Rong</creator><creator>Zheng, Yong Bin</creator><creator>Yan, Yu Zhuang</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130601</creationdate><title>Robust Multisensor Image Matching Using Bayesian Estimated Mutual Information</title><author>Huang, Xin Sheng ; Xu, Wan Ying ; Shen, Lu Rong ; Zheng, Yong Bin ; Yan, Yu Zhuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e231b868711ef3dfd33631adb72f85c0df511fad3f15e73944a024b4b6bc15cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xin Sheng</creatorcontrib><creatorcontrib>Xu, Wan Ying</creatorcontrib><creatorcontrib>Shen, Lu Rong</creatorcontrib><creatorcontrib>Zheng, Yong Bin</creatorcontrib><creatorcontrib>Yan, Yu Zhuang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xin Sheng</au><au>Xu, Wan Ying</au><au>Shen, Lu Rong</au><au>Zheng, Yong Bin</au><au>Yan, Yu Zhuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Multisensor Image Matching Using Bayesian Estimated Mutual Information</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>321-324</volume><spage>541</spage><epage>548</epage><pages>541-548</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037856947</isbn><isbn>9783037856949</isbn><abstract>Mutual information (MI) has been widely used in multisensor image matching, but it may lead to mismatch among images with messy background. However, additional prior information can be of great help in improving the matching performance. In this paper, a robust Bayesian estimated mutual information, named as BMI, for multisensor image matching is proposed. This method has been implemented by utilizing the gradient prior information, in which the prior is estimate by the kernel density estimate (KDE) method, and the likelihood is modeled according to the distance of orientations. To further improve the robustness, we restrict the matching within the regions where the corresponding pixels of template image are salient enough. Experiments on several groups of multisensor images show that the proposed method outperforms the standard MI in robustness and accuracy and is similar with Pluims method. However, our computation is far more cost saving.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.321-324.541</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2013-06, Vol.321-324, p.541-548
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1442444260
source Scientific.net Journals
title Robust Multisensor Image Matching Using Bayesian Estimated Mutual Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Multisensor%20Image%20Matching%20Using%20Bayesian%20Estimated%20Mutual%20Information&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Huang,%20Xin%20Sheng&rft.date=2013-06-01&rft.volume=321-324&rft.spage=541&rft.epage=548&rft.pages=541-548&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037856947&rft.isbn_list=9783037856949&rft_id=info:doi/10.4028/www.scientific.net/AMM.321-324.541&rft_dat=%3Cproquest_cross%3E3100832711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442444260&rft_id=info:pmid/&rfr_iscdi=true