A Low Memory Cost Fast Retrieval Method Based on Bucket Map Chain

To reduce the high memory cost of fast retireval method, we present a fast retrieval method based on bucket map chain on the basis of Exact Euclidean Locality Sensitive Hashing (E2LSH). The bucket map chain contains all the points projected from feature space in multiple buckets, which store the nea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-06, Vol.321-324, p.969-973
Hauptverfasser: Peng, Tian Qiang, Sun, Xiao Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 973
container_issue
container_start_page 969
container_title Applied Mechanics and Materials
container_volume 321-324
creator Peng, Tian Qiang
Sun, Xiao Feng
description To reduce the high memory cost of fast retireval method, we present a fast retrieval method based on bucket map chain on the basis of Exact Euclidean Locality Sensitive Hashing (E2LSH). The bucket map chain contains all the points projected from feature space in multiple buckets, which store the nearby points. When conducting query, it searches the chain by the bucket index of query point and locates the position of related buckets, then reads the related points in related buckets and measurs the similarity of these points with query point. The experiments show that this method can efficiently decrease the memory cost of retrieval. It is very important for increasing the feasibility of large scale information retrieval especially image retrieval.
doi_str_mv 10.4028/www.scientific.net/AMM.321-324.969
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442432837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100787341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-4d8fa2d97f11e4f5718c50cf3846c82bb1b065e158e5f710a025d2c2fd16f9fe3</originalsourceid><addsrcrecordid>eNqNkN1LwzAUxYMf4Db9HwK-Ce3y1TR97KpTYUUQfQ5ZmrDOrZ1JZtl_b3SCPvpw7304h3MuPwBuMEoZImI6DEPqdWu60NpWp50J07KuU0pwQglLC16cgBHmnCQ5E-QUjCmiuch4wfKzbwElBaX8Aoy9XyPEGWZiBMoSLvoB1mbbuwOseh_gXMX1bIJrzYfaRCms-gbOlDcN7Ds42-s3E2CtdrBaqba7BOdWbby5-rkT8Dq_e6keksXT_WNVLhIdHwkJa4RVpClyi7FhNsux0BnSlgrGtSDLJV4inhmcCZPZHCOFSNYQTWyDuS2soRNwfczduf59b3yQ637vulgpMWOEUSJoHl2zo0u73ntnrNy5dqvcQWIkvzjKyFH-cpSRo4wcZeQYh8nIMYbcHkOCU50PRq_-dP0_5hM9NIH5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442432837</pqid></control><display><type>article</type><title>A Low Memory Cost Fast Retrieval Method Based on Bucket Map Chain</title><source>Scientific.net Journals</source><creator>Peng, Tian Qiang ; Sun, Xiao Feng</creator><creatorcontrib>Peng, Tian Qiang ; Sun, Xiao Feng</creatorcontrib><description>To reduce the high memory cost of fast retireval method, we present a fast retrieval method based on bucket map chain on the basis of Exact Euclidean Locality Sensitive Hashing (E2LSH). The bucket map chain contains all the points projected from feature space in multiple buckets, which store the nearby points. When conducting query, it searches the chain by the bucket index of query point and locates the position of related buckets, then reads the related points in related buckets and measurs the similarity of these points with query point. The experiments show that this method can efficiently decrease the memory cost of retrieval. It is very important for increasing the feasibility of large scale information retrieval especially image retrieval.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037856947</identifier><identifier>ISBN: 9783037856949</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.321-324.969</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-06, Vol.321-324, p.969-973</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-4d8fa2d97f11e4f5718c50cf3846c82bb1b065e158e5f710a025d2c2fd16f9fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2388?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Peng, Tian Qiang</creatorcontrib><creatorcontrib>Sun, Xiao Feng</creatorcontrib><title>A Low Memory Cost Fast Retrieval Method Based on Bucket Map Chain</title><title>Applied Mechanics and Materials</title><description>To reduce the high memory cost of fast retireval method, we present a fast retrieval method based on bucket map chain on the basis of Exact Euclidean Locality Sensitive Hashing (E2LSH). The bucket map chain contains all the points projected from feature space in multiple buckets, which store the nearby points. When conducting query, it searches the chain by the bucket index of query point and locates the position of related buckets, then reads the related points in related buckets and measurs the similarity of these points with query point. The experiments show that this method can efficiently decrease the memory cost of retrieval. It is very important for increasing the feasibility of large scale information retrieval especially image retrieval.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037856947</isbn><isbn>9783037856949</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkN1LwzAUxYMf4Db9HwK-Ce3y1TR97KpTYUUQfQ5ZmrDOrZ1JZtl_b3SCPvpw7304h3MuPwBuMEoZImI6DEPqdWu60NpWp50J07KuU0pwQglLC16cgBHmnCQ5E-QUjCmiuch4wfKzbwElBaX8Aoy9XyPEGWZiBMoSLvoB1mbbuwOseh_gXMX1bIJrzYfaRCms-gbOlDcN7Ds42-s3E2CtdrBaqba7BOdWbby5-rkT8Dq_e6keksXT_WNVLhIdHwkJa4RVpClyi7FhNsux0BnSlgrGtSDLJV4inhmcCZPZHCOFSNYQTWyDuS2soRNwfczduf59b3yQ637vulgpMWOEUSJoHl2zo0u73ntnrNy5dqvcQWIkvzjKyFH-cpSRo4wcZeQYh8nIMYbcHkOCU50PRq_-dP0_5hM9NIH5</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Peng, Tian Qiang</creator><creator>Sun, Xiao Feng</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130601</creationdate><title>A Low Memory Cost Fast Retrieval Method Based on Bucket Map Chain</title><author>Peng, Tian Qiang ; Sun, Xiao Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-4d8fa2d97f11e4f5718c50cf3846c82bb1b065e158e5f710a025d2c2fd16f9fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Tian Qiang</creatorcontrib><creatorcontrib>Sun, Xiao Feng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Tian Qiang</au><au>Sun, Xiao Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Low Memory Cost Fast Retrieval Method Based on Bucket Map Chain</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>321-324</volume><spage>969</spage><epage>973</epage><pages>969-973</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037856947</isbn><isbn>9783037856949</isbn><abstract>To reduce the high memory cost of fast retireval method, we present a fast retrieval method based on bucket map chain on the basis of Exact Euclidean Locality Sensitive Hashing (E2LSH). The bucket map chain contains all the points projected from feature space in multiple buckets, which store the nearby points. When conducting query, it searches the chain by the bucket index of query point and locates the position of related buckets, then reads the related points in related buckets and measurs the similarity of these points with query point. The experiments show that this method can efficiently decrease the memory cost of retrieval. It is very important for increasing the feasibility of large scale information retrieval especially image retrieval.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.321-324.969</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2013-06, Vol.321-324, p.969-973
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1442432837
source Scientific.net Journals
title A Low Memory Cost Fast Retrieval Method Based on Bucket Map Chain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Low%20Memory%20Cost%20Fast%20Retrieval%20Method%20Based%20on%20Bucket%20Map%20Chain&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Peng,%20Tian%20Qiang&rft.date=2013-06-01&rft.volume=321-324&rft.spage=969&rft.epage=973&rft.pages=969-973&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037856947&rft.isbn_list=9783037856949&rft_id=info:doi/10.4028/www.scientific.net/AMM.321-324.969&rft_dat=%3Cproquest_cross%3E3100787341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442432837&rft_id=info:pmid/&rfr_iscdi=true