Natural Gesture Recognition Based on Motion Detection and Skin Color
With the development of the Virtual Reality technology and the next Human-Machine Interaction technology, this paper focus on the object motion detection and object skin color analysis, provide one kind of hand gesture segmentation method based on one camera. This method capture the image from the s...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-06, Vol.321-324, p.974-979 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 979 |
---|---|
container_issue | |
container_start_page | 974 |
container_title | Applied Mechanics and Materials |
container_volume | 321-324 |
creator | Luo, Na Feng, Kai Ping Wan, Ke |
description | With the development of the Virtual Reality technology and the next Human-Machine Interaction technology, this paper focus on the object motion detection and object skin color analysis, provide one kind of hand gesture segmentation method based on one camera. This method capture the image from the single camera to detect the moving object by the time difference method and the Gaussian module method, tracking the hand motion region real time, then to segment the hand gesture using the specified region skin color features after the hand region is extracted. Using the motion detection and the skin color features both, to do static gesture recognition by the template match method after extracting the features of the static gesture contour.This experiment make clear that the segmentation has better effect and recognition result. |
doi_str_mv | 10.4028/www.scientific.net/AMM.321-324.974 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442429446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100781501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-b7e9265a794c41e202dd01b5911142f01f2787372c822546c99fb8cfd232f6713</originalsourceid><addsrcrecordid>eNqNkNtOwzAMhiMOEhvwDpW4Q2qXOG7SXO4AA2kDicN11KUpdIx0JJ0m3p6wIcElF5Z_y9Zv-yPkktEMKRSD7XabBdNY1zV1YzJnu8FwPs84sJQDZkriAekxISCVWMAh6XPKZZELhfJo16Cp4lyckH4IS0oFMix6ZHJXdhtfrpKpDVHY5MGa9sU1XdO6ZFQGWyVRzNtdPbGdNTtVuip5fGtcMm5XrT8jx3W5Cvb8J5-S5-urp_FNOruf3o6Hs9TEW7p0Ia0CkZdSoUFmgUJVUbbIFWMMoaasBllILsEUADkKo1S9KExdAYdaSMZPycXed-3bj008WC_bjXdxpWaIgKAQRZwa7aeMb0PwttZr37yX_lMzqr9R6ohS_6LUEaWOKHVEGQN1RBlNJnuTzpcuxLdf_-z6v80XdXCC9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442429446</pqid></control><display><type>article</type><title>Natural Gesture Recognition Based on Motion Detection and Skin Color</title><source>Scientific.net Journals</source><creator>Luo, Na ; Feng, Kai Ping ; Wan, Ke</creator><creatorcontrib>Luo, Na ; Feng, Kai Ping ; Wan, Ke</creatorcontrib><description>With the development of the Virtual Reality technology and the next Human-Machine Interaction technology, this paper focus on the object motion detection and object skin color analysis, provide one kind of hand gesture segmentation method based on one camera. This method capture the image from the single camera to detect the moving object by the time difference method and the Gaussian module method, tracking the hand motion region real time, then to segment the hand gesture using the specified region skin color features after the hand region is extracted. Using the motion detection and the skin color features both, to do static gesture recognition by the template match method after extracting the features of the static gesture contour.This experiment make clear that the segmentation has better effect and recognition result.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037856947</identifier><identifier>ISBN: 9783037856949</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.321-324.974</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-06, Vol.321-324, p.974-979</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-b7e9265a794c41e202dd01b5911142f01f2787372c822546c99fb8cfd232f6713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2388?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Luo, Na</creatorcontrib><creatorcontrib>Feng, Kai Ping</creatorcontrib><creatorcontrib>Wan, Ke</creatorcontrib><title>Natural Gesture Recognition Based on Motion Detection and Skin Color</title><title>Applied Mechanics and Materials</title><description>With the development of the Virtual Reality technology and the next Human-Machine Interaction technology, this paper focus on the object motion detection and object skin color analysis, provide one kind of hand gesture segmentation method based on one camera. This method capture the image from the single camera to detect the moving object by the time difference method and the Gaussian module method, tracking the hand motion region real time, then to segment the hand gesture using the specified region skin color features after the hand region is extracted. Using the motion detection and the skin color features both, to do static gesture recognition by the template match method after extracting the features of the static gesture contour.This experiment make clear that the segmentation has better effect and recognition result.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037856947</isbn><isbn>9783037856949</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkNtOwzAMhiMOEhvwDpW4Q2qXOG7SXO4AA2kDicN11KUpdIx0JJ0m3p6wIcElF5Z_y9Zv-yPkktEMKRSD7XabBdNY1zV1YzJnu8FwPs84sJQDZkriAekxISCVWMAh6XPKZZELhfJo16Cp4lyckH4IS0oFMix6ZHJXdhtfrpKpDVHY5MGa9sU1XdO6ZFQGWyVRzNtdPbGdNTtVuip5fGtcMm5XrT8jx3W5Cvb8J5-S5-urp_FNOruf3o6Hs9TEW7p0Ia0CkZdSoUFmgUJVUbbIFWMMoaasBllILsEUADkKo1S9KExdAYdaSMZPycXed-3bj008WC_bjXdxpWaIgKAQRZwa7aeMb0PwttZr37yX_lMzqr9R6ohS_6LUEaWOKHVEGQN1RBlNJnuTzpcuxLdf_-z6v80XdXCC9Q</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Luo, Na</creator><creator>Feng, Kai Ping</creator><creator>Wan, Ke</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130601</creationdate><title>Natural Gesture Recognition Based on Motion Detection and Skin Color</title><author>Luo, Na ; Feng, Kai Ping ; Wan, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-b7e9265a794c41e202dd01b5911142f01f2787372c822546c99fb8cfd232f6713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Na</creatorcontrib><creatorcontrib>Feng, Kai Ping</creatorcontrib><creatorcontrib>Wan, Ke</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Na</au><au>Feng, Kai Ping</au><au>Wan, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural Gesture Recognition Based on Motion Detection and Skin Color</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>321-324</volume><spage>974</spage><epage>979</epage><pages>974-979</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037856947</isbn><isbn>9783037856949</isbn><abstract>With the development of the Virtual Reality technology and the next Human-Machine Interaction technology, this paper focus on the object motion detection and object skin color analysis, provide one kind of hand gesture segmentation method based on one camera. This method capture the image from the single camera to detect the moving object by the time difference method and the Gaussian module method, tracking the hand motion region real time, then to segment the hand gesture using the specified region skin color features after the hand region is extracted. Using the motion detection and the skin color features both, to do static gesture recognition by the template match method after extracting the features of the static gesture contour.This experiment make clear that the segmentation has better effect and recognition result.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.321-324.974</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2013-06, Vol.321-324, p.974-979 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442429446 |
source | Scientific.net Journals |
title | Natural Gesture Recognition Based on Motion Detection and Skin Color |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20Gesture%20Recognition%20Based%20on%20Motion%20Detection%20and%20Skin%20Color&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Luo,%20Na&rft.date=2013-06-01&rft.volume=321-324&rft.spage=974&rft.epage=979&rft.pages=974-979&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037856947&rft.isbn_list=9783037856949&rft_id=info:doi/10.4028/www.scientific.net/AMM.321-324.974&rft_dat=%3Cproquest_cross%3E3100781501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442429446&rft_id=info:pmid/&rfr_iscdi=true |