A Relative-Stress Based Method for Structural Shape Optimization
A gradientless method for two-dimensional shape optimization is developed based on the magnitude of local relative-stress difference along the design boundary. The design boundary is modeled by using cubic splines, which are determined by a number of control points. The optimal shape of a design bou...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-06, Vol.327, p.271-275 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | |
container_start_page | 271 |
container_title | Applied Mechanics and Materials |
container_volume | 327 |
creator | Wu, Zhi Xue |
description | A gradientless method for two-dimensional shape optimization is developed based on the magnitude of local relative-stress difference along the design boundary. The design boundary is modeled by using cubic splines, which are determined by a number of control points. The optimal shape of a design boundary with constant stress is achieved iteratively by moving control points consecutively (correspondingly, changing the shape of the design boundary) by an amount depending on the relative-stress difference between two neighboring boundary points. The key feature of the optimization method is that no arbitrary threshold stress is required. The result quality in terms of accuracy and efficiency are tested and discussed with several finite element analysis examples. |
doi_str_mv | 10.4028/www.scientific.net/AMM.327.271 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442257101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100337791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-d620843385000667622de02ffbc64717162cb682a384be4854cacc0a55a8ed653</originalsourceid><addsrcrecordid>eNqNkFtLAzEQhYMXsK3-hwXBt93mtkl8kdbiDVoKVsG3kGZn6ZZ2d02yFv31Rivoo08DM2fOmfkQuiA445iq4W63y7ytoA5VWdmshjAcz2YZozKjkhygHhGCppIreoj6DDOpcknky9H3AKeXjIkT1Pd-jbHghKseGo2TR9iYUL1BuggOvE-ujYcimUFYNUVSNi6J_c6GzplNsliZFpJ5G6pt9RG3mvoUHZdm4-Hspw7Q8-3N0-Q-nc7vHibjaWpZLkJaCIoVZ0zlOGYLKSgtANOyXFrB441EULsUihqm-BK4yrk11mKT50ZBIXI2QOd739Y1rx34oNdN5-oYqQnnlMZHMYmqq73KusZ7B6VuXbU17l0TrL8Q6ohQ_yLUEaGOCHVEqCPCaDDaGwRnah_Arv7k_M_iE1Cqf2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442257101</pqid></control><display><type>article</type><title>A Relative-Stress Based Method for Structural Shape Optimization</title><source>Scientific.net Journals</source><creator>Wu, Zhi Xue</creator><creatorcontrib>Wu, Zhi Xue</creatorcontrib><description>A gradientless method for two-dimensional shape optimization is developed based on the magnitude of local relative-stress difference along the design boundary. The design boundary is modeled by using cubic splines, which are determined by a number of control points. The optimal shape of a design boundary with constant stress is achieved iteratively by moving control points consecutively (correspondingly, changing the shape of the design boundary) by an amount depending on the relative-stress difference between two neighboring boundary points. The key feature of the optimization method is that no arbitrary threshold stress is required. The result quality in terms of accuracy and efficiency are tested and discussed with several finite element analysis examples.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 303785717X</identifier><identifier>ISBN: 9783037857175</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.327.271</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-06, Vol.327, p.271-275</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-d620843385000667622de02ffbc64717162cb682a384be4854cacc0a55a8ed653</citedby><cites>FETCH-LOGICAL-c356t-d620843385000667622de02ffbc64717162cb682a384be4854cacc0a55a8ed653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2439?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Zhi Xue</creatorcontrib><title>A Relative-Stress Based Method for Structural Shape Optimization</title><title>Applied Mechanics and Materials</title><description>A gradientless method for two-dimensional shape optimization is developed based on the magnitude of local relative-stress difference along the design boundary. The design boundary is modeled by using cubic splines, which are determined by a number of control points. The optimal shape of a design boundary with constant stress is achieved iteratively by moving control points consecutively (correspondingly, changing the shape of the design boundary) by an amount depending on the relative-stress difference between two neighboring boundary points. The key feature of the optimization method is that no arbitrary threshold stress is required. The result quality in terms of accuracy and efficiency are tested and discussed with several finite element analysis examples.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>303785717X</isbn><isbn>9783037857175</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkFtLAzEQhYMXsK3-hwXBt93mtkl8kdbiDVoKVsG3kGZn6ZZ2d02yFv31Rivoo08DM2fOmfkQuiA445iq4W63y7ytoA5VWdmshjAcz2YZozKjkhygHhGCppIreoj6DDOpcknky9H3AKeXjIkT1Pd-jbHghKseGo2TR9iYUL1BuggOvE-ujYcimUFYNUVSNi6J_c6GzplNsliZFpJ5G6pt9RG3mvoUHZdm4-Hspw7Q8-3N0-Q-nc7vHibjaWpZLkJaCIoVZ0zlOGYLKSgtANOyXFrB441EULsUihqm-BK4yrk11mKT50ZBIXI2QOd739Y1rx34oNdN5-oYqQnnlMZHMYmqq73KusZ7B6VuXbU17l0TrL8Q6ohQ_yLUEaGOCHVEqCPCaDDaGwRnah_Arv7k_M_iE1Cqf2M</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Wu, Zhi Xue</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130601</creationdate><title>A Relative-Stress Based Method for Structural Shape Optimization</title><author>Wu, Zhi Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-d620843385000667622de02ffbc64717162cb682a384be4854cacc0a55a8ed653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhi Xue</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhi Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Relative-Stress Based Method for Structural Shape Optimization</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>327</volume><spage>271</spage><epage>275</epage><pages>271-275</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>303785717X</isbn><isbn>9783037857175</isbn><abstract>A gradientless method for two-dimensional shape optimization is developed based on the magnitude of local relative-stress difference along the design boundary. The design boundary is modeled by using cubic splines, which are determined by a number of control points. The optimal shape of a design boundary with constant stress is achieved iteratively by moving control points consecutively (correspondingly, changing the shape of the design boundary) by an amount depending on the relative-stress difference between two neighboring boundary points. The key feature of the optimization method is that no arbitrary threshold stress is required. The result quality in terms of accuracy and efficiency are tested and discussed with several finite element analysis examples.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.327.271</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2013-06, Vol.327, p.271-275 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442257101 |
source | Scientific.net Journals |
title | A Relative-Stress Based Method for Structural Shape Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Relative-Stress%20Based%20Method%20for%20Structural%20Shape%20Optimization&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Wu,%20Zhi%20Xue&rft.date=2013-06-01&rft.volume=327&rft.spage=271&rft.epage=275&rft.pages=271-275&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=303785717X&rft.isbn_list=9783037857175&rft_id=info:doi/10.4028/www.scientific.net/AMM.327.271&rft_dat=%3Cproquest_cross%3E3100337791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442257101&rft_id=info:pmid/&rfr_iscdi=true |