A Relative-Stress Based Method for Structural Shape Optimization

A gradientless method for two-dimensional shape optimization is developed based on the magnitude of local relative-stress difference along the design boundary. The design boundary is modeled by using cubic splines, which are determined by a number of control points. The optimal shape of a design bou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-06, Vol.327, p.271-275
1. Verfasser: Wu, Zhi Xue
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue
container_start_page 271
container_title Applied Mechanics and Materials
container_volume 327
creator Wu, Zhi Xue
description A gradientless method for two-dimensional shape optimization is developed based on the magnitude of local relative-stress difference along the design boundary. The design boundary is modeled by using cubic splines, which are determined by a number of control points. The optimal shape of a design boundary with constant stress is achieved iteratively by moving control points consecutively (correspondingly, changing the shape of the design boundary) by an amount depending on the relative-stress difference between two neighboring boundary points. The key feature of the optimization method is that no arbitrary threshold stress is required. The result quality in terms of accuracy and efficiency are tested and discussed with several finite element analysis examples.
doi_str_mv 10.4028/www.scientific.net/AMM.327.271
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442257101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100337791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-d620843385000667622de02ffbc64717162cb682a384be4854cacc0a55a8ed653</originalsourceid><addsrcrecordid>eNqNkFtLAzEQhYMXsK3-hwXBt93mtkl8kdbiDVoKVsG3kGZn6ZZ2d02yFv31Rivoo08DM2fOmfkQuiA445iq4W63y7ytoA5VWdmshjAcz2YZozKjkhygHhGCppIreoj6DDOpcknky9H3AKeXjIkT1Pd-jbHghKseGo2TR9iYUL1BuggOvE-ujYcimUFYNUVSNi6J_c6GzplNsliZFpJ5G6pt9RG3mvoUHZdm4-Hspw7Q8-3N0-Q-nc7vHibjaWpZLkJaCIoVZ0zlOGYLKSgtANOyXFrB441EULsUihqm-BK4yrk11mKT50ZBIXI2QOd739Y1rx34oNdN5-oYqQnnlMZHMYmqq73KusZ7B6VuXbU17l0TrL8Q6ohQ_yLUEaGOCHVEqCPCaDDaGwRnah_Arv7k_M_iE1Cqf2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442257101</pqid></control><display><type>article</type><title>A Relative-Stress Based Method for Structural Shape Optimization</title><source>Scientific.net Journals</source><creator>Wu, Zhi Xue</creator><creatorcontrib>Wu, Zhi Xue</creatorcontrib><description>A gradientless method for two-dimensional shape optimization is developed based on the magnitude of local relative-stress difference along the design boundary. The design boundary is modeled by using cubic splines, which are determined by a number of control points. The optimal shape of a design boundary with constant stress is achieved iteratively by moving control points consecutively (correspondingly, changing the shape of the design boundary) by an amount depending on the relative-stress difference between two neighboring boundary points. The key feature of the optimization method is that no arbitrary threshold stress is required. The result quality in terms of accuracy and efficiency are tested and discussed with several finite element analysis examples.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 303785717X</identifier><identifier>ISBN: 9783037857175</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.327.271</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-06, Vol.327, p.271-275</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-d620843385000667622de02ffbc64717162cb682a384be4854cacc0a55a8ed653</citedby><cites>FETCH-LOGICAL-c356t-d620843385000667622de02ffbc64717162cb682a384be4854cacc0a55a8ed653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2439?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Zhi Xue</creatorcontrib><title>A Relative-Stress Based Method for Structural Shape Optimization</title><title>Applied Mechanics and Materials</title><description>A gradientless method for two-dimensional shape optimization is developed based on the magnitude of local relative-stress difference along the design boundary. The design boundary is modeled by using cubic splines, which are determined by a number of control points. The optimal shape of a design boundary with constant stress is achieved iteratively by moving control points consecutively (correspondingly, changing the shape of the design boundary) by an amount depending on the relative-stress difference between two neighboring boundary points. The key feature of the optimization method is that no arbitrary threshold stress is required. The result quality in terms of accuracy and efficiency are tested and discussed with several finite element analysis examples.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>303785717X</isbn><isbn>9783037857175</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkFtLAzEQhYMXsK3-hwXBt93mtkl8kdbiDVoKVsG3kGZn6ZZ2d02yFv31Rivoo08DM2fOmfkQuiA445iq4W63y7ytoA5VWdmshjAcz2YZozKjkhygHhGCppIreoj6DDOpcknky9H3AKeXjIkT1Pd-jbHghKseGo2TR9iYUL1BuggOvE-ujYcimUFYNUVSNi6J_c6GzplNsliZFpJ5G6pt9RG3mvoUHZdm4-Hspw7Q8-3N0-Q-nc7vHibjaWpZLkJaCIoVZ0zlOGYLKSgtANOyXFrB441EULsUihqm-BK4yrk11mKT50ZBIXI2QOd739Y1rx34oNdN5-oYqQnnlMZHMYmqq73KusZ7B6VuXbU17l0TrL8Q6ohQ_yLUEaGOCHVEqCPCaDDaGwRnah_Arv7k_M_iE1Cqf2M</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Wu, Zhi Xue</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130601</creationdate><title>A Relative-Stress Based Method for Structural Shape Optimization</title><author>Wu, Zhi Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-d620843385000667622de02ffbc64717162cb682a384be4854cacc0a55a8ed653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhi Xue</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhi Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Relative-Stress Based Method for Structural Shape Optimization</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>327</volume><spage>271</spage><epage>275</epage><pages>271-275</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>303785717X</isbn><isbn>9783037857175</isbn><abstract>A gradientless method for two-dimensional shape optimization is developed based on the magnitude of local relative-stress difference along the design boundary. The design boundary is modeled by using cubic splines, which are determined by a number of control points. The optimal shape of a design boundary with constant stress is achieved iteratively by moving control points consecutively (correspondingly, changing the shape of the design boundary) by an amount depending on the relative-stress difference between two neighboring boundary points. The key feature of the optimization method is that no arbitrary threshold stress is required. The result quality in terms of accuracy and efficiency are tested and discussed with several finite element analysis examples.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.327.271</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2013-06, Vol.327, p.271-275
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1442257101
source Scientific.net Journals
title A Relative-Stress Based Method for Structural Shape Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Relative-Stress%20Based%20Method%20for%20Structural%20Shape%20Optimization&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Wu,%20Zhi%20Xue&rft.date=2013-06-01&rft.volume=327&rft.spage=271&rft.epage=275&rft.pages=271-275&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=303785717X&rft.isbn_list=9783037857175&rft_id=info:doi/10.4028/www.scientific.net/AMM.327.271&rft_dat=%3Cproquest_cross%3E3100337791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442257101&rft_id=info:pmid/&rfr_iscdi=true