A Behavior-Based Rapid Method for P2P Traffic Identification

This paper presents a rapid identification model and analyses the behavioral characteristics which is different from non-P2P applications on link pattern through analysis on three P2P applications. This method classifies P2P applications in the background and improves the recognition efficiency thro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-08, Vol.380-384, p.3661-3666
Hauptverfasser: Zhao, Ming, Fang, Yi Qiu, Ge, Jun Wei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3666
container_issue
container_start_page 3661
container_title Applied Mechanics and Materials
container_volume 380-384
creator Zhao, Ming
Fang, Yi Qiu
Ge, Jun Wei
description This paper presents a rapid identification model and analyses the behavioral characteristics which is different from non-P2P applications on link pattern through analysis on three P2P applications. This method classifies P2P applications in the background and improves the recognition efficiency through the effective combination of behavioral characteristics and valid flows filter on the premise of maintaining the recognition accuracy. In the packet processing, matching frequency parameter has been using to increase matching efficiency. The experimental results show that P2P traffic can be effectively identified by this method.
doi_str_mv 10.4028/www.scientific.net/AMM.380-384.3661
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442243793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100230481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2201-f3abc6caf57fe811cb108f08e2ce9cbf5345a9e31efee67076f087113b10fc613</originalsourceid><addsrcrecordid>eNqVkEtPAjEUhRsfiYD-h0lcmhn6mrYkboCgkkAkBtdN6dyGITrFdpD47y1ColsXN3dxTs6590PojuCCY6r6-_2-iLaGpq1dbYsG2v5wPi-YwjlTvGBCkDPUIULQXHJFz1GXYSZVqSgWFz8CzgeMiSvUjXGDseCEqw66H2YjWJvP2od8ZCJU2YvZ1lU2h3btq8z5kC3oIlsG41JtNq1OB5i29s01unTmLcLNaffQ68NkOX7KZ8-P0_FwlltKMckdMysrrHGldKAIsSuClcMKqIWBXbmS8dIMgBFwAEJiKZIoCWHJ56wgrIduj7nb4D92EFu98bvQpEpNOKeUM5le66Hx0WWDjzGA09tQv5vwpQnWB4Y6MdS_DHViqBNDnRim4frAMKVMjiltME1swa7_lP0j5xtcioFd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442243793</pqid></control><display><type>article</type><title>A Behavior-Based Rapid Method for P2P Traffic Identification</title><source>Scientific.net Journals</source><creator>Zhao, Ming ; Fang, Yi Qiu ; Ge, Jun Wei</creator><creatorcontrib>Zhao, Ming ; Fang, Yi Qiu ; Ge, Jun Wei</creatorcontrib><description>This paper presents a rapid identification model and analyses the behavioral characteristics which is different from non-P2P applications on link pattern through analysis on three P2P applications. This method classifies P2P applications in the background and improves the recognition efficiency through the effective combination of behavioral characteristics and valid flows filter on the premise of maintaining the recognition accuracy. In the packet processing, matching frequency parameter has been using to increase matching efficiency. The experimental results show that P2P traffic can be effectively identified by this method.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037858206</identifier><identifier>ISBN: 9783037858202</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.380-384.3661</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-08, Vol.380-384, p.3661-3666</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2201-f3abc6caf57fe811cb108f08e2ce9cbf5345a9e31efee67076f087113b10fc613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2617?width=600</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Fang, Yi Qiu</creatorcontrib><creatorcontrib>Ge, Jun Wei</creatorcontrib><title>A Behavior-Based Rapid Method for P2P Traffic Identification</title><title>Applied Mechanics and Materials</title><description>This paper presents a rapid identification model and analyses the behavioral characteristics which is different from non-P2P applications on link pattern through analysis on three P2P applications. This method classifies P2P applications in the background and improves the recognition efficiency through the effective combination of behavioral characteristics and valid flows filter on the premise of maintaining the recognition accuracy. In the packet processing, matching frequency parameter has been using to increase matching efficiency. The experimental results show that P2P traffic can be effectively identified by this method.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037858206</isbn><isbn>9783037858202</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkEtPAjEUhRsfiYD-h0lcmhn6mrYkboCgkkAkBtdN6dyGITrFdpD47y1ColsXN3dxTs6590PojuCCY6r6-_2-iLaGpq1dbYsG2v5wPi-YwjlTvGBCkDPUIULQXHJFz1GXYSZVqSgWFz8CzgeMiSvUjXGDseCEqw66H2YjWJvP2od8ZCJU2YvZ1lU2h3btq8z5kC3oIlsG41JtNq1OB5i29s01unTmLcLNaffQ68NkOX7KZ8-P0_FwlltKMckdMysrrHGldKAIsSuClcMKqIWBXbmS8dIMgBFwAEJiKZIoCWHJ56wgrIduj7nb4D92EFu98bvQpEpNOKeUM5le66Hx0WWDjzGA09tQv5vwpQnWB4Y6MdS_DHViqBNDnRim4frAMKVMjiltME1swa7_lP0j5xtcioFd</recordid><startdate>20130830</startdate><enddate>20130830</enddate><creator>Zhao, Ming</creator><creator>Fang, Yi Qiu</creator><creator>Ge, Jun Wei</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130830</creationdate><title>A Behavior-Based Rapid Method for P2P Traffic Identification</title><author>Zhao, Ming ; Fang, Yi Qiu ; Ge, Jun Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2201-f3abc6caf57fe811cb108f08e2ce9cbf5345a9e31efee67076f087113b10fc613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Fang, Yi Qiu</creatorcontrib><creatorcontrib>Ge, Jun Wei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ming</au><au>Fang, Yi Qiu</au><au>Ge, Jun Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Behavior-Based Rapid Method for P2P Traffic Identification</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-08-30</date><risdate>2013</risdate><volume>380-384</volume><spage>3661</spage><epage>3666</epage><pages>3661-3666</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037858206</isbn><isbn>9783037858202</isbn><abstract>This paper presents a rapid identification model and analyses the behavioral characteristics which is different from non-P2P applications on link pattern through analysis on three P2P applications. This method classifies P2P applications in the background and improves the recognition efficiency through the effective combination of behavioral characteristics and valid flows filter on the premise of maintaining the recognition accuracy. In the packet processing, matching frequency parameter has been using to increase matching efficiency. The experimental results show that P2P traffic can be effectively identified by this method.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.380-384.3661</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2013-08, Vol.380-384, p.3661-3666
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1442243793
source Scientific.net Journals
title A Behavior-Based Rapid Method for P2P Traffic Identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Behavior-Based%20Rapid%20Method%20for%20P2P%20Traffic%20Identification&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Zhao,%20Ming&rft.date=2013-08-30&rft.volume=380-384&rft.spage=3661&rft.epage=3666&rft.pages=3661-3666&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037858206&rft.isbn_list=9783037858202&rft_id=info:doi/10.4028/www.scientific.net/AMM.380-384.3661&rft_dat=%3Cproquest_cross%3E3100230481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442243793&rft_id=info:pmid/&rfr_iscdi=true