Slope Stability Forecast of LS-SVM Based on Chaos Genetic Algorithm Optimization
As the relationship between geotechnical slope stability and influencing factors is complex and nonlinear, the least squares support vector machines (LS-SVM) is used to establish the nonlinear relation between slope stability and influencing factors. And in consideration of that parameters selection...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-09, Vol.405-408, p.2384-2390 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2390 |
---|---|
container_issue | |
container_start_page | 2384 |
container_title | Applied Mechanics and Materials |
container_volume | 405-408 |
creator | Cai, Zheng Long Meng, Yong Dong Lu, Wei Ping Wang, Rui Yao |
description | As the relationship between geotechnical slope stability and influencing factors is complex and nonlinear, the least squares support vector machines (LS-SVM) is used to establish the nonlinear relation between slope stability and influencing factors. And in consideration of that parameters selection of LS-SVM exerts a major influence on modeling results, the parameters of LS-SVM are optimized by chaos genetic algorithm (CGA). Thus the CGA LSSVM is proposed for forecasting slope stability. Through the comparison between the method and the simple genetic algorithm (SGA) parameters optimization. The result shows that parameters optimization of the CGA has better faster convergence speed, higher prediction precision. And the model is applied to predict the safety factor of the actual slope engineering and the results are well consistent with the actual situation. It is shown that the model is reasonable and feasible. |
doi_str_mv | 10.4028/www.scientific.net/AMM.405-408.2384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442197207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099802521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-3adda8433231fb92b702f73d67908c0e7ef4a95609517e7c798e1472ff1aee6c3</originalsourceid><addsrcrecordid>eNqVkE1PAjEURRs_EgH9D01cmoF-zbSzRAJoAsEEdduU0koJTLGtIfjrLWKiWxcvb3Ffzs07ANxh1GWIiN5-v-9G7UyTnHW625jU60-nOSsLhkSXUMHOQAtXFSk4E-QctCmiXJSi5OXFd4CKmtLqCrRjXCNUMcxECzzNN35n4Dyphdu4dIAjH4xWMUFv4WRezF-n8F5Fs4S-gYOV8hGOTS53GvY3bz64tNrC2S65rftUyfnmGlxatYnm5md3wMto-Dx4KCaz8eOgPyk0RWUqqFoulWCUEortoiYLjojldFnxGgmNDDeWqbqsUF1ibrjmtTCYcWItVsZUmnbA7Ym7C_79w8Qk1_4jNLlSYsYIrjlBPF8NTlc6-BiDsXIX3FaFg8RIHr3K7FX-epX5NZm95qzMI-TRa6YMT5QUVBOT0as_Zf_gfAEld4iK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442197207</pqid></control><display><type>article</type><title>Slope Stability Forecast of LS-SVM Based on Chaos Genetic Algorithm Optimization</title><source>Scientific.net Journals</source><creator>Cai, Zheng Long ; Meng, Yong Dong ; Lu, Wei Ping ; Wang, Rui Yao</creator><creatorcontrib>Cai, Zheng Long ; Meng, Yong Dong ; Lu, Wei Ping ; Wang, Rui Yao</creatorcontrib><description>As the relationship between geotechnical slope stability and influencing factors is complex and nonlinear, the least squares support vector machines (LS-SVM) is used to establish the nonlinear relation between slope stability and influencing factors. And in consideration of that parameters selection of LS-SVM exerts a major influence on modeling results, the parameters of LS-SVM are optimized by chaos genetic algorithm (CGA). Thus the CGA LSSVM is proposed for forecasting slope stability. Through the comparison between the method and the simple genetic algorithm (SGA) parameters optimization. The result shows that parameters optimization of the CGA has better faster convergence speed, higher prediction precision. And the model is applied to predict the safety factor of the actual slope engineering and the results are well consistent with the actual situation. It is shown that the model is reasonable and feasible.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037858575</identifier><identifier>ISBN: 9783037858578</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.405-408.2384</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-09, Vol.405-408, p.2384-2390</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-3adda8433231fb92b702f73d67908c0e7ef4a95609517e7c798e1472ff1aee6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2685?width=600</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Cai, Zheng Long</creatorcontrib><creatorcontrib>Meng, Yong Dong</creatorcontrib><creatorcontrib>Lu, Wei Ping</creatorcontrib><creatorcontrib>Wang, Rui Yao</creatorcontrib><title>Slope Stability Forecast of LS-SVM Based on Chaos Genetic Algorithm Optimization</title><title>Applied Mechanics and Materials</title><description>As the relationship between geotechnical slope stability and influencing factors is complex and nonlinear, the least squares support vector machines (LS-SVM) is used to establish the nonlinear relation between slope stability and influencing factors. And in consideration of that parameters selection of LS-SVM exerts a major influence on modeling results, the parameters of LS-SVM are optimized by chaos genetic algorithm (CGA). Thus the CGA LSSVM is proposed for forecasting slope stability. Through the comparison between the method and the simple genetic algorithm (SGA) parameters optimization. The result shows that parameters optimization of the CGA has better faster convergence speed, higher prediction precision. And the model is applied to predict the safety factor of the actual slope engineering and the results are well consistent with the actual situation. It is shown that the model is reasonable and feasible.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037858575</isbn><isbn>9783037858578</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkE1PAjEURRs_EgH9D01cmoF-zbSzRAJoAsEEdduU0koJTLGtIfjrLWKiWxcvb3Ffzs07ANxh1GWIiN5-v-9G7UyTnHW625jU60-nOSsLhkSXUMHOQAtXFSk4E-QctCmiXJSi5OXFd4CKmtLqCrRjXCNUMcxECzzNN35n4Dyphdu4dIAjH4xWMUFv4WRezF-n8F5Fs4S-gYOV8hGOTS53GvY3bz64tNrC2S65rftUyfnmGlxatYnm5md3wMto-Dx4KCaz8eOgPyk0RWUqqFoulWCUEortoiYLjojldFnxGgmNDDeWqbqsUF1ibrjmtTCYcWItVsZUmnbA7Ym7C_79w8Qk1_4jNLlSYsYIrjlBPF8NTlc6-BiDsXIX3FaFg8RIHr3K7FX-epX5NZm95qzMI-TRa6YMT5QUVBOT0as_Zf_gfAEld4iK</recordid><startdate>20130903</startdate><enddate>20130903</enddate><creator>Cai, Zheng Long</creator><creator>Meng, Yong Dong</creator><creator>Lu, Wei Ping</creator><creator>Wang, Rui Yao</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130903</creationdate><title>Slope Stability Forecast of LS-SVM Based on Chaos Genetic Algorithm Optimization</title><author>Cai, Zheng Long ; Meng, Yong Dong ; Lu, Wei Ping ; Wang, Rui Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-3adda8433231fb92b702f73d67908c0e7ef4a95609517e7c798e1472ff1aee6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zheng Long</creatorcontrib><creatorcontrib>Meng, Yong Dong</creatorcontrib><creatorcontrib>Lu, Wei Ping</creatorcontrib><creatorcontrib>Wang, Rui Yao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zheng Long</au><au>Meng, Yong Dong</au><au>Lu, Wei Ping</au><au>Wang, Rui Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slope Stability Forecast of LS-SVM Based on Chaos Genetic Algorithm Optimization</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-09-03</date><risdate>2013</risdate><volume>405-408</volume><spage>2384</spage><epage>2390</epage><pages>2384-2390</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037858575</isbn><isbn>9783037858578</isbn><abstract>As the relationship between geotechnical slope stability and influencing factors is complex and nonlinear, the least squares support vector machines (LS-SVM) is used to establish the nonlinear relation between slope stability and influencing factors. And in consideration of that parameters selection of LS-SVM exerts a major influence on modeling results, the parameters of LS-SVM are optimized by chaos genetic algorithm (CGA). Thus the CGA LSSVM is proposed for forecasting slope stability. Through the comparison between the method and the simple genetic algorithm (SGA) parameters optimization. The result shows that parameters optimization of the CGA has better faster convergence speed, higher prediction precision. And the model is applied to predict the safety factor of the actual slope engineering and the results are well consistent with the actual situation. It is shown that the model is reasonable and feasible.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.405-408.2384</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2013-09, Vol.405-408, p.2384-2390 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442197207 |
source | Scientific.net Journals |
title | Slope Stability Forecast of LS-SVM Based on Chaos Genetic Algorithm Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slope%20Stability%20Forecast%20of%20LS-SVM%20Based%20on%20Chaos%20Genetic%20Algorithm%20Optimization&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Cai,%20Zheng%20Long&rft.date=2013-09-03&rft.volume=405-408&rft.spage=2384&rft.epage=2390&rft.pages=2384-2390&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037858575&rft.isbn_list=9783037858578&rft_id=info:doi/10.4028/www.scientific.net/AMM.405-408.2384&rft_dat=%3Cproquest_cross%3E3099802521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442197207&rft_id=info:pmid/&rfr_iscdi=true |