Fractal Dimensional Analysis of Runoff in Jinsha River Basin, China
The hydrological processes are becoming more and more complex. Fractal dimension is one of the important measurements of complexity. This paper utilizes wavelets transform technique to calculate the fractal dimension of runoff for eight stations (Zhimenda, Shigu, Ganzi, Yajiang, Guili, Luning, Xiaod...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-09, Vol.405-408, p.2181-2184 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2184 |
---|---|
container_issue | |
container_start_page | 2181 |
container_title | Applied Mechanics and Materials |
container_volume | 405-408 |
creator | Xie, Yun Xia Zeng, Shang Chun Wang, Wen Sheng |
description | The hydrological processes are becoming more and more complex. Fractal dimension is one of the important measurements of complexity. This paper utilizes wavelets transform technique to calculate the fractal dimension of runoff for eight stations (Zhimenda, Shigu, Ganzi, Yajiang, Guili, Luning, Xiaodeshi, Pingshan ) in the Jinsha River Basin. The results show: the runoff series in the Jinsha River Basin is fractal; the approach for estimating the fractal dimension by using wavelet transform coefficients is feasible and effective; the fractal dimension of runoff reflect the influence of factors on the runoff. |
doi_str_mv | 10.4028/www.scientific.net/AMM.405-408.2181 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442190488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099810591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-4a1d67e97b8eeab285cf0d5a829d780ed72da28702c61bcd9c36214e4ea559643</originalsourceid><addsrcrecordid>eNqVkEtLAzEUhYMPsK3-h4BLnTHJ5DXLOrY-aBGKrkOaydCUNlOTqaX_3tQKunVxH3AO514-AG4wyiki8m632-XROOs71ziTe9vdDafTpLGMIpkTLPEJ6GHOSSaoJKegX6BCSCaZYGffAsrKouAXoB_jEiFOMZU9UI2DNp1ewQe3tj661qd9mNo-ugjbBs62vm0a6Dx8cT4uNJy5TxvgvY7O38Jq4by-BOeNXkV79TMH4H08equessnr43M1nGSmELjLqMY1F7YUc2mtnhPJTINqpiUpayGRrQWpNZECEcPx3NSlKTjB1FKrGSs5LQbg-pi7Ce3H1sZOLdttSL9GhSkluERUyuSqji4T2hiDbdQmuLUOe4WROqBUCaX6RakSSpVQJo2lkuqAMqWMjild0D521iz-HPtHzhfNK4QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442190488</pqid></control><display><type>article</type><title>Fractal Dimensional Analysis of Runoff in Jinsha River Basin, China</title><source>Scientific.net Journals</source><creator>Xie, Yun Xia ; Zeng, Shang Chun ; Wang, Wen Sheng</creator><creatorcontrib>Xie, Yun Xia ; Zeng, Shang Chun ; Wang, Wen Sheng</creatorcontrib><description>The hydrological processes are becoming more and more complex. Fractal dimension is one of the important measurements of complexity. This paper utilizes wavelets transform technique to calculate the fractal dimension of runoff for eight stations (Zhimenda, Shigu, Ganzi, Yajiang, Guili, Luning, Xiaodeshi, Pingshan ) in the Jinsha River Basin. The results show: the runoff series in the Jinsha River Basin is fractal; the approach for estimating the fractal dimension by using wavelet transform coefficients is feasible and effective; the fractal dimension of runoff reflect the influence of factors on the runoff.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037858575</identifier><identifier>ISBN: 9783037858578</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.405-408.2181</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-09, Vol.405-408, p.2181-2184</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-4a1d67e97b8eeab285cf0d5a829d780ed72da28702c61bcd9c36214e4ea559643</citedby><cites>FETCH-LOGICAL-c371t-4a1d67e97b8eeab285cf0d5a829d780ed72da28702c61bcd9c36214e4ea559643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2685?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xie, Yun Xia</creatorcontrib><creatorcontrib>Zeng, Shang Chun</creatorcontrib><creatorcontrib>Wang, Wen Sheng</creatorcontrib><title>Fractal Dimensional Analysis of Runoff in Jinsha River Basin, China</title><title>Applied Mechanics and Materials</title><description>The hydrological processes are becoming more and more complex. Fractal dimension is one of the important measurements of complexity. This paper utilizes wavelets transform technique to calculate the fractal dimension of runoff for eight stations (Zhimenda, Shigu, Ganzi, Yajiang, Guili, Luning, Xiaodeshi, Pingshan ) in the Jinsha River Basin. The results show: the runoff series in the Jinsha River Basin is fractal; the approach for estimating the fractal dimension by using wavelet transform coefficients is feasible and effective; the fractal dimension of runoff reflect the influence of factors on the runoff.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037858575</isbn><isbn>9783037858578</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqVkEtLAzEUhYMPsK3-h4BLnTHJ5DXLOrY-aBGKrkOaydCUNlOTqaX_3tQKunVxH3AO514-AG4wyiki8m632-XROOs71ziTe9vdDafTpLGMIpkTLPEJ6GHOSSaoJKegX6BCSCaZYGffAsrKouAXoB_jEiFOMZU9UI2DNp1ewQe3tj661qd9mNo-ugjbBs62vm0a6Dx8cT4uNJy5TxvgvY7O38Jq4by-BOeNXkV79TMH4H08equessnr43M1nGSmELjLqMY1F7YUc2mtnhPJTINqpiUpayGRrQWpNZECEcPx3NSlKTjB1FKrGSs5LQbg-pi7Ce3H1sZOLdttSL9GhSkluERUyuSqji4T2hiDbdQmuLUOe4WROqBUCaX6RakSSpVQJo2lkuqAMqWMjild0D521iz-HPtHzhfNK4QA</recordid><startdate>20130903</startdate><enddate>20130903</enddate><creator>Xie, Yun Xia</creator><creator>Zeng, Shang Chun</creator><creator>Wang, Wen Sheng</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130903</creationdate><title>Fractal Dimensional Analysis of Runoff in Jinsha River Basin, China</title><author>Xie, Yun Xia ; Zeng, Shang Chun ; Wang, Wen Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-4a1d67e97b8eeab285cf0d5a829d780ed72da28702c61bcd9c36214e4ea559643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Yun Xia</creatorcontrib><creatorcontrib>Zeng, Shang Chun</creatorcontrib><creatorcontrib>Wang, Wen Sheng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Yun Xia</au><au>Zeng, Shang Chun</au><au>Wang, Wen Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractal Dimensional Analysis of Runoff in Jinsha River Basin, China</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-09-03</date><risdate>2013</risdate><volume>405-408</volume><spage>2181</spage><epage>2184</epage><pages>2181-2184</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037858575</isbn><isbn>9783037858578</isbn><abstract>The hydrological processes are becoming more and more complex. Fractal dimension is one of the important measurements of complexity. This paper utilizes wavelets transform technique to calculate the fractal dimension of runoff for eight stations (Zhimenda, Shigu, Ganzi, Yajiang, Guili, Luning, Xiaodeshi, Pingshan ) in the Jinsha River Basin. The results show: the runoff series in the Jinsha River Basin is fractal; the approach for estimating the fractal dimension by using wavelet transform coefficients is feasible and effective; the fractal dimension of runoff reflect the influence of factors on the runoff.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.405-408.2181</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2013-09, Vol.405-408, p.2181-2184 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442190488 |
source | Scientific.net Journals |
title | Fractal Dimensional Analysis of Runoff in Jinsha River Basin, China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractal%20Dimensional%20Analysis%20of%20Runoff%20in%20Jinsha%20River%20Basin,%20China&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Xie,%20Yun%20Xia&rft.date=2013-09-03&rft.volume=405-408&rft.spage=2181&rft.epage=2184&rft.pages=2181-2184&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037858575&rft.isbn_list=9783037858578&rft_id=info:doi/10.4028/www.scientific.net/AMM.405-408.2181&rft_dat=%3Cproquest_cross%3E3099810591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442190488&rft_id=info:pmid/&rfr_iscdi=true |