Fractal Dimensional Analysis of Runoff in Jinsha River Basin, China

The hydrological processes are becoming more and more complex. Fractal dimension is one of the important measurements of complexity. This paper utilizes wavelets transform technique to calculate the fractal dimension of runoff for eight stations (Zhimenda, Shigu, Ganzi, Yajiang, Guili, Luning, Xiaod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-09, Vol.405-408, p.2181-2184
Hauptverfasser: Xie, Yun Xia, Zeng, Shang Chun, Wang, Wen Sheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2184
container_issue
container_start_page 2181
container_title Applied Mechanics and Materials
container_volume 405-408
creator Xie, Yun Xia
Zeng, Shang Chun
Wang, Wen Sheng
description The hydrological processes are becoming more and more complex. Fractal dimension is one of the important measurements of complexity. This paper utilizes wavelets transform technique to calculate the fractal dimension of runoff for eight stations (Zhimenda, Shigu, Ganzi, Yajiang, Guili, Luning, Xiaodeshi, Pingshan ) in the Jinsha River Basin. The results show: the runoff series in the Jinsha River Basin is fractal; the approach for estimating the fractal dimension by using wavelet transform coefficients is feasible and effective; the fractal dimension of runoff reflect the influence of factors on the runoff.
doi_str_mv 10.4028/www.scientific.net/AMM.405-408.2181
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442190488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099810591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-4a1d67e97b8eeab285cf0d5a829d780ed72da28702c61bcd9c36214e4ea559643</originalsourceid><addsrcrecordid>eNqVkEtLAzEUhYMPsK3-h4BLnTHJ5DXLOrY-aBGKrkOaydCUNlOTqaX_3tQKunVxH3AO514-AG4wyiki8m632-XROOs71ziTe9vdDafTpLGMIpkTLPEJ6GHOSSaoJKegX6BCSCaZYGffAsrKouAXoB_jEiFOMZU9UI2DNp1ewQe3tj661qd9mNo-ugjbBs62vm0a6Dx8cT4uNJy5TxvgvY7O38Jq4by-BOeNXkV79TMH4H08equessnr43M1nGSmELjLqMY1F7YUc2mtnhPJTINqpiUpayGRrQWpNZECEcPx3NSlKTjB1FKrGSs5LQbg-pi7Ce3H1sZOLdttSL9GhSkluERUyuSqji4T2hiDbdQmuLUOe4WROqBUCaX6RakSSpVQJo2lkuqAMqWMjild0D521iz-HPtHzhfNK4QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442190488</pqid></control><display><type>article</type><title>Fractal Dimensional Analysis of Runoff in Jinsha River Basin, China</title><source>Scientific.net Journals</source><creator>Xie, Yun Xia ; Zeng, Shang Chun ; Wang, Wen Sheng</creator><creatorcontrib>Xie, Yun Xia ; Zeng, Shang Chun ; Wang, Wen Sheng</creatorcontrib><description>The hydrological processes are becoming more and more complex. Fractal dimension is one of the important measurements of complexity. This paper utilizes wavelets transform technique to calculate the fractal dimension of runoff for eight stations (Zhimenda, Shigu, Ganzi, Yajiang, Guili, Luning, Xiaodeshi, Pingshan ) in the Jinsha River Basin. The results show: the runoff series in the Jinsha River Basin is fractal; the approach for estimating the fractal dimension by using wavelet transform coefficients is feasible and effective; the fractal dimension of runoff reflect the influence of factors on the runoff.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037858575</identifier><identifier>ISBN: 9783037858578</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.405-408.2181</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-09, Vol.405-408, p.2181-2184</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-4a1d67e97b8eeab285cf0d5a829d780ed72da28702c61bcd9c36214e4ea559643</citedby><cites>FETCH-LOGICAL-c371t-4a1d67e97b8eeab285cf0d5a829d780ed72da28702c61bcd9c36214e4ea559643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2685?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xie, Yun Xia</creatorcontrib><creatorcontrib>Zeng, Shang Chun</creatorcontrib><creatorcontrib>Wang, Wen Sheng</creatorcontrib><title>Fractal Dimensional Analysis of Runoff in Jinsha River Basin, China</title><title>Applied Mechanics and Materials</title><description>The hydrological processes are becoming more and more complex. Fractal dimension is one of the important measurements of complexity. This paper utilizes wavelets transform technique to calculate the fractal dimension of runoff for eight stations (Zhimenda, Shigu, Ganzi, Yajiang, Guili, Luning, Xiaodeshi, Pingshan ) in the Jinsha River Basin. The results show: the runoff series in the Jinsha River Basin is fractal; the approach for estimating the fractal dimension by using wavelet transform coefficients is feasible and effective; the fractal dimension of runoff reflect the influence of factors on the runoff.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037858575</isbn><isbn>9783037858578</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqVkEtLAzEUhYMPsK3-h4BLnTHJ5DXLOrY-aBGKrkOaydCUNlOTqaX_3tQKunVxH3AO514-AG4wyiki8m632-XROOs71ziTe9vdDafTpLGMIpkTLPEJ6GHOSSaoJKegX6BCSCaZYGffAsrKouAXoB_jEiFOMZU9UI2DNp1ewQe3tj661qd9mNo-ugjbBs62vm0a6Dx8cT4uNJy5TxvgvY7O38Jq4by-BOeNXkV79TMH4H08equessnr43M1nGSmELjLqMY1F7YUc2mtnhPJTINqpiUpayGRrQWpNZECEcPx3NSlKTjB1FKrGSs5LQbg-pi7Ce3H1sZOLdttSL9GhSkluERUyuSqji4T2hiDbdQmuLUOe4WROqBUCaX6RakSSpVQJo2lkuqAMqWMjild0D521iz-HPtHzhfNK4QA</recordid><startdate>20130903</startdate><enddate>20130903</enddate><creator>Xie, Yun Xia</creator><creator>Zeng, Shang Chun</creator><creator>Wang, Wen Sheng</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130903</creationdate><title>Fractal Dimensional Analysis of Runoff in Jinsha River Basin, China</title><author>Xie, Yun Xia ; Zeng, Shang Chun ; Wang, Wen Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-4a1d67e97b8eeab285cf0d5a829d780ed72da28702c61bcd9c36214e4ea559643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Yun Xia</creatorcontrib><creatorcontrib>Zeng, Shang Chun</creatorcontrib><creatorcontrib>Wang, Wen Sheng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Yun Xia</au><au>Zeng, Shang Chun</au><au>Wang, Wen Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractal Dimensional Analysis of Runoff in Jinsha River Basin, China</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-09-03</date><risdate>2013</risdate><volume>405-408</volume><spage>2181</spage><epage>2184</epage><pages>2181-2184</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037858575</isbn><isbn>9783037858578</isbn><abstract>The hydrological processes are becoming more and more complex. Fractal dimension is one of the important measurements of complexity. This paper utilizes wavelets transform technique to calculate the fractal dimension of runoff for eight stations (Zhimenda, Shigu, Ganzi, Yajiang, Guili, Luning, Xiaodeshi, Pingshan ) in the Jinsha River Basin. The results show: the runoff series in the Jinsha River Basin is fractal; the approach for estimating the fractal dimension by using wavelet transform coefficients is feasible and effective; the fractal dimension of runoff reflect the influence of factors on the runoff.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.405-408.2181</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2013-09, Vol.405-408, p.2181-2184
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1442190488
source Scientific.net Journals
title Fractal Dimensional Analysis of Runoff in Jinsha River Basin, China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractal%20Dimensional%20Analysis%20of%20Runoff%20in%20Jinsha%20River%20Basin,%20China&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Xie,%20Yun%20Xia&rft.date=2013-09-03&rft.volume=405-408&rft.spage=2181&rft.epage=2184&rft.pages=2181-2184&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037858575&rft.isbn_list=9783037858578&rft_id=info:doi/10.4028/www.scientific.net/AMM.405-408.2181&rft_dat=%3Cproquest_cross%3E3099810591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442190488&rft_id=info:pmid/&rfr_iscdi=true