Enhanced Visible-Light Hydrogen-Production Activity of Copper-Modified ZnxCd1−xS
Copper modification is an efficient way to enhance the photocatalytic activity of ZnS‐based materials; however, the mechanisms of Cu2+ surface and bulk modifications for improving the activity are quite different. In this work, two different synthetic pathways were devised to prepare surface and bul...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2013-10, Vol.6 (10), p.2009-2015 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2015 |
---|---|
container_issue | 10 |
container_start_page | 2009 |
container_title | ChemSusChem |
container_volume | 6 |
creator | Zhang, Jun Xu, Quanlong Qiao, Shi Zhang Yu, Jiaguo |
description | Copper modification is an efficient way to enhance the photocatalytic activity of ZnS‐based materials; however, the mechanisms of Cu2+ surface and bulk modifications for improving the activity are quite different. In this work, two different synthetic pathways were devised to prepare surface and bulk Cu2+‐modified ZnxCd1−xS photocatalysts through cation‐exchange and coprecipitation methods, respectively. Different Cu2+ modifications brought different effects on the phase structure, morphology, surface area, optical property, as well as the photocatalytic H2‐production activity of the final products. The optimized Cu2+‐surface‐modified ZnxCd1−xS photocatalyst has a high H2‐production rate of 4638.5 μmol h−1 g−1 and an apparent quantum efficiency of 20.9 % at 420 nm, exceeding that of Cu2+‐bulk‐modified catalyst at the same copper content. Cu2+ surface modification not only brings a new electron‐transferring pathway (interfacial charge transfer), but also produces new surface active sites for H2 evolution, reducing the recombination rate of photogenerated charge carriers.
Surface modification: Two different synthetic pathways are devised to prepare surface and bulk Cu2+‐modified ZnxCd1−xS through cation‐exchange and coprecipitation methods, respectively. Cu2+ surface modification can provide a new electron‐transferring pathway (interfacial charge transfer) and also form new surface active sites for H2 evolution, resulting in enhanced visible‐light H2‐production activity (see picture). |
doi_str_mv | 10.1002/cssc.201300409 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1441659600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097630831</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2719-9995460bee394d15a4b9e53ad5f77b972f24a539b5fbaf4d545e5537fd3968b3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiYjeer3E62K7foxekgVFBTVC0HjTdGsLRdzmOpT9A6_9if4SRzC7es9J3uec5AHgHKMeRii8TL1PeyHCBCGKxAHo4D6nkHH6ctjOBB-DE-9XCHEkOO-Ap2G2VFlqdDB33iVrA8dusayCUa3LfGEy-FjmepNWLs-CQROfrqqD3AZxXhSmhJNcO-sa-jXbxhr_fv9sp6fgyKq1N2f_2QWzq-EsHsHxw_VNPBhDF0ZYQCEEoxwlxhBBNWaKJsIwojSzUZSIKLQhVYyIhNlEWaoZZYYxEllNBO8npAsu9meLMv_YGF_JVb4ps-ajxJRizgRHqGmJfevLrU0ti9K9q7KWGMmdM7lzJltnMp5O43ZrWLhnna_MtmVV-SZ5RCImn--v5ZzdjdBsNJG35A8XpXJS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441659600</pqid></control><display><type>article</type><title>Enhanced Visible-Light Hydrogen-Production Activity of Copper-Modified ZnxCd1−xS</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Jun ; Xu, Quanlong ; Qiao, Shi Zhang ; Yu, Jiaguo</creator><creatorcontrib>Zhang, Jun ; Xu, Quanlong ; Qiao, Shi Zhang ; Yu, Jiaguo</creatorcontrib><description>Copper modification is an efficient way to enhance the photocatalytic activity of ZnS‐based materials; however, the mechanisms of Cu2+ surface and bulk modifications for improving the activity are quite different. In this work, two different synthetic pathways were devised to prepare surface and bulk Cu2+‐modified ZnxCd1−xS photocatalysts through cation‐exchange and coprecipitation methods, respectively. Different Cu2+ modifications brought different effects on the phase structure, morphology, surface area, optical property, as well as the photocatalytic H2‐production activity of the final products. The optimized Cu2+‐surface‐modified ZnxCd1−xS photocatalyst has a high H2‐production rate of 4638.5 μmol h−1 g−1 and an apparent quantum efficiency of 20.9 % at 420 nm, exceeding that of Cu2+‐bulk‐modified catalyst at the same copper content. Cu2+ surface modification not only brings a new electron‐transferring pathway (interfacial charge transfer), but also produces new surface active sites for H2 evolution, reducing the recombination rate of photogenerated charge carriers.
Surface modification: Two different synthetic pathways are devised to prepare surface and bulk Cu2+‐modified ZnxCd1−xS through cation‐exchange and coprecipitation methods, respectively. Cu2+ surface modification can provide a new electron‐transferring pathway (interfacial charge transfer) and also form new surface active sites for H2 evolution, resulting in enhanced visible‐light H2‐production activity (see picture).</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201300409</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>charge transfer ; copper ; hydrogen ; photochemistry ; water splitting</subject><ispartof>ChemSusChem, 2013-10, Vol.6 (10), p.2009-2015</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201300409$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201300409$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Xu, Quanlong</creatorcontrib><creatorcontrib>Qiao, Shi Zhang</creatorcontrib><creatorcontrib>Yu, Jiaguo</creatorcontrib><title>Enhanced Visible-Light Hydrogen-Production Activity of Copper-Modified ZnxCd1−xS</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Copper modification is an efficient way to enhance the photocatalytic activity of ZnS‐based materials; however, the mechanisms of Cu2+ surface and bulk modifications for improving the activity are quite different. In this work, two different synthetic pathways were devised to prepare surface and bulk Cu2+‐modified ZnxCd1−xS photocatalysts through cation‐exchange and coprecipitation methods, respectively. Different Cu2+ modifications brought different effects on the phase structure, morphology, surface area, optical property, as well as the photocatalytic H2‐production activity of the final products. The optimized Cu2+‐surface‐modified ZnxCd1−xS photocatalyst has a high H2‐production rate of 4638.5 μmol h−1 g−1 and an apparent quantum efficiency of 20.9 % at 420 nm, exceeding that of Cu2+‐bulk‐modified catalyst at the same copper content. Cu2+ surface modification not only brings a new electron‐transferring pathway (interfacial charge transfer), but also produces new surface active sites for H2 evolution, reducing the recombination rate of photogenerated charge carriers.
Surface modification: Two different synthetic pathways are devised to prepare surface and bulk Cu2+‐modified ZnxCd1−xS through cation‐exchange and coprecipitation methods, respectively. Cu2+ surface modification can provide a new electron‐transferring pathway (interfacial charge transfer) and also form new surface active sites for H2 evolution, resulting in enhanced visible‐light H2‐production activity (see picture).</description><subject>charge transfer</subject><subject>copper</subject><subject>hydrogen</subject><subject>photochemistry</subject><subject>water splitting</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kF1PwjAUhhujiYjeer3E62K7foxekgVFBTVC0HjTdGsLRdzmOpT9A6_9if4SRzC7es9J3uec5AHgHKMeRii8TL1PeyHCBCGKxAHo4D6nkHH6ctjOBB-DE-9XCHEkOO-Ap2G2VFlqdDB33iVrA8dusayCUa3LfGEy-FjmepNWLs-CQROfrqqD3AZxXhSmhJNcO-sa-jXbxhr_fv9sp6fgyKq1N2f_2QWzq-EsHsHxw_VNPBhDF0ZYQCEEoxwlxhBBNWaKJsIwojSzUZSIKLQhVYyIhNlEWaoZZYYxEllNBO8npAsu9meLMv_YGF_JVb4ps-ajxJRizgRHqGmJfevLrU0ti9K9q7KWGMmdM7lzJltnMp5O43ZrWLhnna_MtmVV-SZ5RCImn--v5ZzdjdBsNJG35A8XpXJS</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Zhang, Jun</creator><creator>Xu, Quanlong</creator><creator>Qiao, Shi Zhang</creator><creator>Yu, Jiaguo</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope></search><sort><creationdate>201310</creationdate><title>Enhanced Visible-Light Hydrogen-Production Activity of Copper-Modified ZnxCd1−xS</title><author>Zhang, Jun ; Xu, Quanlong ; Qiao, Shi Zhang ; Yu, Jiaguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2719-9995460bee394d15a4b9e53ad5f77b972f24a539b5fbaf4d545e5537fd3968b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>charge transfer</topic><topic>copper</topic><topic>hydrogen</topic><topic>photochemistry</topic><topic>water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Xu, Quanlong</creatorcontrib><creatorcontrib>Qiao, Shi Zhang</creatorcontrib><creatorcontrib>Yu, Jiaguo</creatorcontrib><collection>Istex</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jun</au><au>Xu, Quanlong</au><au>Qiao, Shi Zhang</au><au>Yu, Jiaguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Visible-Light Hydrogen-Production Activity of Copper-Modified ZnxCd1−xS</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2013-10</date><risdate>2013</risdate><volume>6</volume><issue>10</issue><spage>2009</spage><epage>2015</epage><pages>2009-2015</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Copper modification is an efficient way to enhance the photocatalytic activity of ZnS‐based materials; however, the mechanisms of Cu2+ surface and bulk modifications for improving the activity are quite different. In this work, two different synthetic pathways were devised to prepare surface and bulk Cu2+‐modified ZnxCd1−xS photocatalysts through cation‐exchange and coprecipitation methods, respectively. Different Cu2+ modifications brought different effects on the phase structure, morphology, surface area, optical property, as well as the photocatalytic H2‐production activity of the final products. The optimized Cu2+‐surface‐modified ZnxCd1−xS photocatalyst has a high H2‐production rate of 4638.5 μmol h−1 g−1 and an apparent quantum efficiency of 20.9 % at 420 nm, exceeding that of Cu2+‐bulk‐modified catalyst at the same copper content. Cu2+ surface modification not only brings a new electron‐transferring pathway (interfacial charge transfer), but also produces new surface active sites for H2 evolution, reducing the recombination rate of photogenerated charge carriers.
Surface modification: Two different synthetic pathways are devised to prepare surface and bulk Cu2+‐modified ZnxCd1−xS through cation‐exchange and coprecipitation methods, respectively. Cu2+ surface modification can provide a new electron‐transferring pathway (interfacial charge transfer) and also form new surface active sites for H2 evolution, resulting in enhanced visible‐light H2‐production activity (see picture).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/cssc.201300409</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2013-10, Vol.6 (10), p.2009-2015 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_journals_1441659600 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | charge transfer copper hydrogen photochemistry water splitting |
title | Enhanced Visible-Light Hydrogen-Production Activity of Copper-Modified ZnxCd1−xS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Visible-Light%20Hydrogen-Production%20Activity%20of%20Copper-Modified%20ZnxCd1%E2%88%92xS&rft.jtitle=ChemSusChem&rft.au=Zhang,%20Jun&rft.date=2013-10&rft.volume=6&rft.issue=10&rft.spage=2009&rft.epage=2015&rft.pages=2009-2015&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201300409&rft_dat=%3Cproquest_wiley%3E3097630831%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441659600&rft_id=info:pmid/&rfr_iscdi=true |