Ceramic nanocomposites based on oxides of transition metals for ionistors
Low-temperature synthesis methods are used to produce nanoceramic materials for electrodes of the following ionistors: (ZrO 2 ) 0.6 (In 2 O 3 ) 0.4 , praseodymium cobaltite, as well as neodymium, lanthanum, and nickel chromites; they operate in the presence of an ion-conducting phosphorosilicate sep...
Gespeichert in:
Veröffentlicht in: | Glass physics and chemistry 2013-10, Vol.39 (5), p.570-578 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 578 |
---|---|
container_issue | 5 |
container_start_page | 570 |
container_title | Glass physics and chemistry |
container_volume | 39 |
creator | Shilova, O. A. Antipov, V. N. Tikhonov, P. A. Kruchinina, I. Yu Arsent’ev, M. Yu Panova, T. I. Morozova, L. V. Moskovskaya, V. V. Kalinina, M. V. Tsvetkova, I. N. |
description | Low-temperature synthesis methods are used to produce nanoceramic materials for electrodes of the following ionistors: (ZrO
2
)
0.6
(In
2
O
3
)
0.4
, praseodymium cobaltite, as well as neodymium, lanthanum, and nickel chromites; they operate in the presence of an ion-conducting phosphorosilicate separator membrane and phosphate impregnation. Film electrodes of ionistors are fabricated that consist of nanocrystalline oxide materials deposited as a thin film on a porous electroconductive metal substrate, i.e., foamed nickel. The MnO
2
-foamed nickel electrode has a specific capacity of 45.0 F g
−1
, which is compared with that of industrial supercapacitors. |
doi_str_mv | 10.1134/S1087659613050179 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1441394903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096587261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-cede98e4300f5efcd35614985f44b13bc3855280ac06eb21506329ec004b3b863</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLguvoDvAU8V2c6SdocZVF3YcGDCt5KmibSxTZr0gX992ZZD4J4mpn3NfAYu0S4RiRx84RQV0pqhQQSsNJHbIYK6oKQXo_znuliz5-ys5Q2AKCrSszYauGiGXrLRzMGG4ZtSP3kEm9Nch0PIw-ffZfv4PkUzZjJPoODm8x74j5Ens8-TSGmc3biM-gufuacvdzfPS-WxfrxYbW4XReWUE2FdZ3TtRME4KXztiOpUOhaeiFapNZSLWVZg7GgXFuiBEWldhZAtNTWiubs6pC7jeFj59LUbMIujvllg0IgaaGBsgoPKhtDStH5Zhv7wcSvBqHZN9b8aSx7yoMnZe345uKv5H9N38ppbPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441394903</pqid></control><display><type>article</type><title>Ceramic nanocomposites based on oxides of transition metals for ionistors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shilova, O. A. ; Antipov, V. N. ; Tikhonov, P. A. ; Kruchinina, I. Yu ; Arsent’ev, M. Yu ; Panova, T. I. ; Morozova, L. V. ; Moskovskaya, V. V. ; Kalinina, M. V. ; Tsvetkova, I. N.</creator><creatorcontrib>Shilova, O. A. ; Antipov, V. N. ; Tikhonov, P. A. ; Kruchinina, I. Yu ; Arsent’ev, M. Yu ; Panova, T. I. ; Morozova, L. V. ; Moskovskaya, V. V. ; Kalinina, M. V. ; Tsvetkova, I. N.</creatorcontrib><description>Low-temperature synthesis methods are used to produce nanoceramic materials for electrodes of the following ionistors: (ZrO
2
)
0.6
(In
2
O
3
)
0.4
, praseodymium cobaltite, as well as neodymium, lanthanum, and nickel chromites; they operate in the presence of an ion-conducting phosphorosilicate separator membrane and phosphate impregnation. Film electrodes of ionistors are fabricated that consist of nanocrystalline oxide materials deposited as a thin film on a porous electroconductive metal substrate, i.e., foamed nickel. The MnO
2
-foamed nickel electrode has a specific capacity of 45.0 F g
−1
, which is compared with that of industrial supercapacitors.</description><identifier>ISSN: 1087-6596</identifier><identifier>EISSN: 1608-313X</identifier><identifier>DOI: 10.1134/S1087659613050179</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Glass ; Materials Science ; Natural Materials ; Physical Chemistry</subject><ispartof>Glass physics and chemistry, 2013-10, Vol.39 (5), p.570-578</ispartof><rights>Pleiades Publishing, Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-cede98e4300f5efcd35614985f44b13bc3855280ac06eb21506329ec004b3b863</citedby><cites>FETCH-LOGICAL-c316t-cede98e4300f5efcd35614985f44b13bc3855280ac06eb21506329ec004b3b863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1087659613050179$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1087659613050179$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Shilova, O. A.</creatorcontrib><creatorcontrib>Antipov, V. N.</creatorcontrib><creatorcontrib>Tikhonov, P. A.</creatorcontrib><creatorcontrib>Kruchinina, I. Yu</creatorcontrib><creatorcontrib>Arsent’ev, M. Yu</creatorcontrib><creatorcontrib>Panova, T. I.</creatorcontrib><creatorcontrib>Morozova, L. V.</creatorcontrib><creatorcontrib>Moskovskaya, V. V.</creatorcontrib><creatorcontrib>Kalinina, M. V.</creatorcontrib><creatorcontrib>Tsvetkova, I. N.</creatorcontrib><title>Ceramic nanocomposites based on oxides of transition metals for ionistors</title><title>Glass physics and chemistry</title><addtitle>Glass Phys Chem</addtitle><description>Low-temperature synthesis methods are used to produce nanoceramic materials for electrodes of the following ionistors: (ZrO
2
)
0.6
(In
2
O
3
)
0.4
, praseodymium cobaltite, as well as neodymium, lanthanum, and nickel chromites; they operate in the presence of an ion-conducting phosphorosilicate separator membrane and phosphate impregnation. Film electrodes of ionistors are fabricated that consist of nanocrystalline oxide materials deposited as a thin film on a porous electroconductive metal substrate, i.e., foamed nickel. The MnO
2
-foamed nickel electrode has a specific capacity of 45.0 F g
−1
, which is compared with that of industrial supercapacitors.</description><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Glass</subject><subject>Materials Science</subject><subject>Natural Materials</subject><subject>Physical Chemistry</subject><issn>1087-6596</issn><issn>1608-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLguvoDvAU8V2c6SdocZVF3YcGDCt5KmibSxTZr0gX992ZZD4J4mpn3NfAYu0S4RiRx84RQV0pqhQQSsNJHbIYK6oKQXo_znuliz5-ys5Q2AKCrSszYauGiGXrLRzMGG4ZtSP3kEm9Nch0PIw-ffZfv4PkUzZjJPoODm8x74j5Ens8-TSGmc3biM-gufuacvdzfPS-WxfrxYbW4XReWUE2FdZ3TtRME4KXztiOpUOhaeiFapNZSLWVZg7GgXFuiBEWldhZAtNTWiubs6pC7jeFj59LUbMIujvllg0IgaaGBsgoPKhtDStH5Zhv7wcSvBqHZN9b8aSx7yoMnZe345uKv5H9N38ppbPA</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Shilova, O. A.</creator><creator>Antipov, V. N.</creator><creator>Tikhonov, P. A.</creator><creator>Kruchinina, I. Yu</creator><creator>Arsent’ev, M. Yu</creator><creator>Panova, T. I.</creator><creator>Morozova, L. V.</creator><creator>Moskovskaya, V. V.</creator><creator>Kalinina, M. V.</creator><creator>Tsvetkova, I. N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20131001</creationdate><title>Ceramic nanocomposites based on oxides of transition metals for ionistors</title><author>Shilova, O. A. ; Antipov, V. N. ; Tikhonov, P. A. ; Kruchinina, I. Yu ; Arsent’ev, M. Yu ; Panova, T. I. ; Morozova, L. V. ; Moskovskaya, V. V. ; Kalinina, M. V. ; Tsvetkova, I. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-cede98e4300f5efcd35614985f44b13bc3855280ac06eb21506329ec004b3b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Glass</topic><topic>Materials Science</topic><topic>Natural Materials</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shilova, O. A.</creatorcontrib><creatorcontrib>Antipov, V. N.</creatorcontrib><creatorcontrib>Tikhonov, P. A.</creatorcontrib><creatorcontrib>Kruchinina, I. Yu</creatorcontrib><creatorcontrib>Arsent’ev, M. Yu</creatorcontrib><creatorcontrib>Panova, T. I.</creatorcontrib><creatorcontrib>Morozova, L. V.</creatorcontrib><creatorcontrib>Moskovskaya, V. V.</creatorcontrib><creatorcontrib>Kalinina, M. V.</creatorcontrib><creatorcontrib>Tsvetkova, I. N.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Glass physics and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shilova, O. A.</au><au>Antipov, V. N.</au><au>Tikhonov, P. A.</au><au>Kruchinina, I. Yu</au><au>Arsent’ev, M. Yu</au><au>Panova, T. I.</au><au>Morozova, L. V.</au><au>Moskovskaya, V. V.</au><au>Kalinina, M. V.</au><au>Tsvetkova, I. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ceramic nanocomposites based on oxides of transition metals for ionistors</atitle><jtitle>Glass physics and chemistry</jtitle><stitle>Glass Phys Chem</stitle><date>2013-10-01</date><risdate>2013</risdate><volume>39</volume><issue>5</issue><spage>570</spage><epage>578</epage><pages>570-578</pages><issn>1087-6596</issn><eissn>1608-313X</eissn><abstract>Low-temperature synthesis methods are used to produce nanoceramic materials for electrodes of the following ionistors: (ZrO
2
)
0.6
(In
2
O
3
)
0.4
, praseodymium cobaltite, as well as neodymium, lanthanum, and nickel chromites; they operate in the presence of an ion-conducting phosphorosilicate separator membrane and phosphate impregnation. Film electrodes of ionistors are fabricated that consist of nanocrystalline oxide materials deposited as a thin film on a porous electroconductive metal substrate, i.e., foamed nickel. The MnO
2
-foamed nickel electrode has a specific capacity of 45.0 F g
−1
, which is compared with that of industrial supercapacitors.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1134/S1087659613050179</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-6596 |
ispartof | Glass physics and chemistry, 2013-10, Vol.39 (5), p.570-578 |
issn | 1087-6596 1608-313X |
language | eng |
recordid | cdi_proquest_journals_1441394903 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Glass Materials Science Natural Materials Physical Chemistry |
title | Ceramic nanocomposites based on oxides of transition metals for ionistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ceramic%20nanocomposites%20based%20on%20oxides%20of%20transition%20metals%20for%20ionistors&rft.jtitle=Glass%20physics%20and%20chemistry&rft.au=Shilova,%20O.%20A.&rft.date=2013-10-01&rft.volume=39&rft.issue=5&rft.spage=570&rft.epage=578&rft.pages=570-578&rft.issn=1087-6596&rft.eissn=1608-313X&rft_id=info:doi/10.1134/S1087659613050179&rft_dat=%3Cproquest_cross%3E3096587261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441394903&rft_id=info:pmid/&rfr_iscdi=true |