Ceramic nanocomposites based on oxides of transition metals for ionistors

Low-temperature synthesis methods are used to produce nanoceramic materials for electrodes of the following ionistors: (ZrO 2 ) 0.6 (In 2 O 3 ) 0.4 , praseodymium cobaltite, as well as neodymium, lanthanum, and nickel chromites; they operate in the presence of an ion-conducting phosphorosilicate sep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glass physics and chemistry 2013-10, Vol.39 (5), p.570-578
Hauptverfasser: Shilova, O. A., Antipov, V. N., Tikhonov, P. A., Kruchinina, I. Yu, Arsent’ev, M. Yu, Panova, T. I., Morozova, L. V., Moskovskaya, V. V., Kalinina, M. V., Tsvetkova, I. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 578
container_issue 5
container_start_page 570
container_title Glass physics and chemistry
container_volume 39
creator Shilova, O. A.
Antipov, V. N.
Tikhonov, P. A.
Kruchinina, I. Yu
Arsent’ev, M. Yu
Panova, T. I.
Morozova, L. V.
Moskovskaya, V. V.
Kalinina, M. V.
Tsvetkova, I. N.
description Low-temperature synthesis methods are used to produce nanoceramic materials for electrodes of the following ionistors: (ZrO 2 ) 0.6 (In 2 O 3 ) 0.4 , praseodymium cobaltite, as well as neodymium, lanthanum, and nickel chromites; they operate in the presence of an ion-conducting phosphorosilicate separator membrane and phosphate impregnation. Film electrodes of ionistors are fabricated that consist of nanocrystalline oxide materials deposited as a thin film on a porous electroconductive metal substrate, i.e., foamed nickel. The MnO 2 -foamed nickel electrode has a specific capacity of 45.0 F g −1 , which is compared with that of industrial supercapacitors.
doi_str_mv 10.1134/S1087659613050179
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1441394903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096587261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-cede98e4300f5efcd35614985f44b13bc3855280ac06eb21506329ec004b3b863</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLguvoDvAU8V2c6SdocZVF3YcGDCt5KmibSxTZr0gX992ZZD4J4mpn3NfAYu0S4RiRx84RQV0pqhQQSsNJHbIYK6oKQXo_znuliz5-ys5Q2AKCrSszYauGiGXrLRzMGG4ZtSP3kEm9Nch0PIw-ffZfv4PkUzZjJPoODm8x74j5Ens8-TSGmc3biM-gufuacvdzfPS-WxfrxYbW4XReWUE2FdZ3TtRME4KXztiOpUOhaeiFapNZSLWVZg7GgXFuiBEWldhZAtNTWiubs6pC7jeFj59LUbMIujvllg0IgaaGBsgoPKhtDStH5Zhv7wcSvBqHZN9b8aSx7yoMnZe345uKv5H9N38ppbPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441394903</pqid></control><display><type>article</type><title>Ceramic nanocomposites based on oxides of transition metals for ionistors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shilova, O. A. ; Antipov, V. N. ; Tikhonov, P. A. ; Kruchinina, I. Yu ; Arsent’ev, M. Yu ; Panova, T. I. ; Morozova, L. V. ; Moskovskaya, V. V. ; Kalinina, M. V. ; Tsvetkova, I. N.</creator><creatorcontrib>Shilova, O. A. ; Antipov, V. N. ; Tikhonov, P. A. ; Kruchinina, I. Yu ; Arsent’ev, M. Yu ; Panova, T. I. ; Morozova, L. V. ; Moskovskaya, V. V. ; Kalinina, M. V. ; Tsvetkova, I. N.</creatorcontrib><description>Low-temperature synthesis methods are used to produce nanoceramic materials for electrodes of the following ionistors: (ZrO 2 ) 0.6 (In 2 O 3 ) 0.4 , praseodymium cobaltite, as well as neodymium, lanthanum, and nickel chromites; they operate in the presence of an ion-conducting phosphorosilicate separator membrane and phosphate impregnation. Film electrodes of ionistors are fabricated that consist of nanocrystalline oxide materials deposited as a thin film on a porous electroconductive metal substrate, i.e., foamed nickel. The MnO 2 -foamed nickel electrode has a specific capacity of 45.0 F g −1 , which is compared with that of industrial supercapacitors.</description><identifier>ISSN: 1087-6596</identifier><identifier>EISSN: 1608-313X</identifier><identifier>DOI: 10.1134/S1087659613050179</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Glass ; Materials Science ; Natural Materials ; Physical Chemistry</subject><ispartof>Glass physics and chemistry, 2013-10, Vol.39 (5), p.570-578</ispartof><rights>Pleiades Publishing, Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-cede98e4300f5efcd35614985f44b13bc3855280ac06eb21506329ec004b3b863</citedby><cites>FETCH-LOGICAL-c316t-cede98e4300f5efcd35614985f44b13bc3855280ac06eb21506329ec004b3b863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1087659613050179$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1087659613050179$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Shilova, O. A.</creatorcontrib><creatorcontrib>Antipov, V. N.</creatorcontrib><creatorcontrib>Tikhonov, P. A.</creatorcontrib><creatorcontrib>Kruchinina, I. Yu</creatorcontrib><creatorcontrib>Arsent’ev, M. Yu</creatorcontrib><creatorcontrib>Panova, T. I.</creatorcontrib><creatorcontrib>Morozova, L. V.</creatorcontrib><creatorcontrib>Moskovskaya, V. V.</creatorcontrib><creatorcontrib>Kalinina, M. V.</creatorcontrib><creatorcontrib>Tsvetkova, I. N.</creatorcontrib><title>Ceramic nanocomposites based on oxides of transition metals for ionistors</title><title>Glass physics and chemistry</title><addtitle>Glass Phys Chem</addtitle><description>Low-temperature synthesis methods are used to produce nanoceramic materials for electrodes of the following ionistors: (ZrO 2 ) 0.6 (In 2 O 3 ) 0.4 , praseodymium cobaltite, as well as neodymium, lanthanum, and nickel chromites; they operate in the presence of an ion-conducting phosphorosilicate separator membrane and phosphate impregnation. Film electrodes of ionistors are fabricated that consist of nanocrystalline oxide materials deposited as a thin film on a porous electroconductive metal substrate, i.e., foamed nickel. The MnO 2 -foamed nickel electrode has a specific capacity of 45.0 F g −1 , which is compared with that of industrial supercapacitors.</description><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Glass</subject><subject>Materials Science</subject><subject>Natural Materials</subject><subject>Physical Chemistry</subject><issn>1087-6596</issn><issn>1608-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLguvoDvAU8V2c6SdocZVF3YcGDCt5KmibSxTZr0gX992ZZD4J4mpn3NfAYu0S4RiRx84RQV0pqhQQSsNJHbIYK6oKQXo_znuliz5-ys5Q2AKCrSszYauGiGXrLRzMGG4ZtSP3kEm9Nch0PIw-ffZfv4PkUzZjJPoODm8x74j5Ens8-TSGmc3biM-gufuacvdzfPS-WxfrxYbW4XReWUE2FdZ3TtRME4KXztiOpUOhaeiFapNZSLWVZg7GgXFuiBEWldhZAtNTWiubs6pC7jeFj59LUbMIujvllg0IgaaGBsgoPKhtDStH5Zhv7wcSvBqHZN9b8aSx7yoMnZe345uKv5H9N38ppbPA</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Shilova, O. A.</creator><creator>Antipov, V. N.</creator><creator>Tikhonov, P. A.</creator><creator>Kruchinina, I. Yu</creator><creator>Arsent’ev, M. Yu</creator><creator>Panova, T. I.</creator><creator>Morozova, L. V.</creator><creator>Moskovskaya, V. V.</creator><creator>Kalinina, M. V.</creator><creator>Tsvetkova, I. N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20131001</creationdate><title>Ceramic nanocomposites based on oxides of transition metals for ionistors</title><author>Shilova, O. A. ; Antipov, V. N. ; Tikhonov, P. A. ; Kruchinina, I. Yu ; Arsent’ev, M. Yu ; Panova, T. I. ; Morozova, L. V. ; Moskovskaya, V. V. ; Kalinina, M. V. ; Tsvetkova, I. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-cede98e4300f5efcd35614985f44b13bc3855280ac06eb21506329ec004b3b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Glass</topic><topic>Materials Science</topic><topic>Natural Materials</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shilova, O. A.</creatorcontrib><creatorcontrib>Antipov, V. N.</creatorcontrib><creatorcontrib>Tikhonov, P. A.</creatorcontrib><creatorcontrib>Kruchinina, I. Yu</creatorcontrib><creatorcontrib>Arsent’ev, M. Yu</creatorcontrib><creatorcontrib>Panova, T. I.</creatorcontrib><creatorcontrib>Morozova, L. V.</creatorcontrib><creatorcontrib>Moskovskaya, V. V.</creatorcontrib><creatorcontrib>Kalinina, M. V.</creatorcontrib><creatorcontrib>Tsvetkova, I. N.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Glass physics and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shilova, O. A.</au><au>Antipov, V. N.</au><au>Tikhonov, P. A.</au><au>Kruchinina, I. Yu</au><au>Arsent’ev, M. Yu</au><au>Panova, T. I.</au><au>Morozova, L. V.</au><au>Moskovskaya, V. V.</au><au>Kalinina, M. V.</au><au>Tsvetkova, I. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ceramic nanocomposites based on oxides of transition metals for ionistors</atitle><jtitle>Glass physics and chemistry</jtitle><stitle>Glass Phys Chem</stitle><date>2013-10-01</date><risdate>2013</risdate><volume>39</volume><issue>5</issue><spage>570</spage><epage>578</epage><pages>570-578</pages><issn>1087-6596</issn><eissn>1608-313X</eissn><abstract>Low-temperature synthesis methods are used to produce nanoceramic materials for electrodes of the following ionistors: (ZrO 2 ) 0.6 (In 2 O 3 ) 0.4 , praseodymium cobaltite, as well as neodymium, lanthanum, and nickel chromites; they operate in the presence of an ion-conducting phosphorosilicate separator membrane and phosphate impregnation. Film electrodes of ionistors are fabricated that consist of nanocrystalline oxide materials deposited as a thin film on a porous electroconductive metal substrate, i.e., foamed nickel. The MnO 2 -foamed nickel electrode has a specific capacity of 45.0 F g −1 , which is compared with that of industrial supercapacitors.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1134/S1087659613050179</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1087-6596
ispartof Glass physics and chemistry, 2013-10, Vol.39 (5), p.570-578
issn 1087-6596
1608-313X
language eng
recordid cdi_proquest_journals_1441394903
source SpringerLink Journals - AutoHoldings
subjects Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Glass
Materials Science
Natural Materials
Physical Chemistry
title Ceramic nanocomposites based on oxides of transition metals for ionistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ceramic%20nanocomposites%20based%20on%20oxides%20of%20transition%20metals%20for%20ionistors&rft.jtitle=Glass%20physics%20and%20chemistry&rft.au=Shilova,%20O.%20A.&rft.date=2013-10-01&rft.volume=39&rft.issue=5&rft.spage=570&rft.epage=578&rft.pages=570-578&rft.issn=1087-6596&rft.eissn=1608-313X&rft_id=info:doi/10.1134/S1087659613050179&rft_dat=%3Cproquest_cross%3E3096587261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441394903&rft_id=info:pmid/&rfr_iscdi=true