Boundary Regularity for Solutions to the Linearized Monge–Ampère Equations

We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge–Ampère equations under natural assumptions on the domain, Monge–Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2013-12, Vol.210 (3), p.813-836
Hauptverfasser: Le, N. Q., Savin, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 836
container_issue 3
container_start_page 813
container_title Archive for rational mechanics and analysis
container_volume 210
creator Le, N. Q.
Savin, O.
description We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge–Ampère equations under natural assumptions on the domain, Monge–Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.
doi_str_mv 10.1007/s00205-013-0653-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1441214499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095689481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-64bc4d553e75ff7848f9bf2bb486e839cfed3cf1d22bbc5d36c137bf58f8ed843</originalsourceid><addsrcrecordid>eNp1UEtOwzAQtRBIlMIB2FlibfA3cZalKgWpFRKftZX4U1K1cWsni7LiDlyCe3ATToJLWLBhM6OZee-N3gPgnOBLgnF-FTGmWCBMGMKZYEgcgAHhjKYpZ4dggDFmqBA0PwYnMS73I2XZAMyvfdeYMuzgg110qzLU7Q46H-CjX3Vt7ZsIWw_bFwtndWPT-dUaOPfNwn69vY_Wm8-PYOFk25U_2FNw5MpVtGe_fQiebyZP41s0u5_ejUczpBnJWpTxSnMjBLO5cC6XXLqicrSquMysZIV21jDtiKFpp4VhmSYsr5yQTlojORuCi153E_y2s7FVS9-FJr1UhHNCUymKhCI9SgcfY7BObUK9Tl4VwWqfmupTUyk1tU9NicShPScmbHIZ_ij_S_oGwnFx3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441214499</pqid></control><display><type>article</type><title>Boundary Regularity for Solutions to the Linearized Monge–Ampère Equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Le, N. Q. ; Savin, O.</creator><creatorcontrib>Le, N. Q. ; Savin, O.</creatorcontrib><description>We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge–Ampère equations under natural assumptions on the domain, Monge–Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-013-0653-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Complex Systems ; Fluid- and Aerodynamics ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2013-12, Vol.210 (3), p.813-836</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-64bc4d553e75ff7848f9bf2bb486e839cfed3cf1d22bbc5d36c137bf58f8ed843</citedby><cites>FETCH-LOGICAL-c316t-64bc4d553e75ff7848f9bf2bb486e839cfed3cf1d22bbc5d36c137bf58f8ed843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-013-0653-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-013-0653-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Le, N. Q.</creatorcontrib><creatorcontrib>Savin, O.</creatorcontrib><title>Boundary Regularity for Solutions to the Linearized Monge–Ampère Equations</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge–Ampère equations under natural assumptions on the domain, Monge–Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UEtOwzAQtRBIlMIB2FlibfA3cZalKgWpFRKftZX4U1K1cWsni7LiDlyCe3ATToJLWLBhM6OZee-N3gPgnOBLgnF-FTGmWCBMGMKZYEgcgAHhjKYpZ4dggDFmqBA0PwYnMS73I2XZAMyvfdeYMuzgg110qzLU7Q46H-CjX3Vt7ZsIWw_bFwtndWPT-dUaOPfNwn69vY_Wm8-PYOFk25U_2FNw5MpVtGe_fQiebyZP41s0u5_ejUczpBnJWpTxSnMjBLO5cC6XXLqicrSquMysZIV21jDtiKFpp4VhmSYsr5yQTlojORuCi153E_y2s7FVS9-FJr1UhHNCUymKhCI9SgcfY7BObUK9Tl4VwWqfmupTUyk1tU9NicShPScmbHIZ_ij_S_oGwnFx3Q</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Le, N. Q.</creator><creator>Savin, O.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20131201</creationdate><title>Boundary Regularity for Solutions to the Linearized Monge–Ampère Equations</title><author>Le, N. Q. ; Savin, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-64bc4d553e75ff7848f9bf2bb486e839cfed3cf1d22bbc5d36c137bf58f8ed843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, N. Q.</creatorcontrib><creatorcontrib>Savin, O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, N. Q.</au><au>Savin, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary Regularity for Solutions to the Linearized Monge–Ampère Equations</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>210</volume><issue>3</issue><spage>813</spage><epage>836</epage><pages>813-836</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge–Ampère equations under natural assumptions on the domain, Monge–Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-013-0653-5</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2013-12, Vol.210 (3), p.813-836
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_1441214499
source SpringerLink Journals - AutoHoldings
subjects Classical Mechanics
Complex Systems
Fluid- and Aerodynamics
Mathematical and Computational Physics
Physics
Physics and Astronomy
Theoretical
title Boundary Regularity for Solutions to the Linearized Monge–Ampère Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20Regularity%20for%20Solutions%20to%20the%20Linearized%20Monge%E2%80%93Amp%C3%A8re%20Equations&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Le,%20N.%20Q.&rft.date=2013-12-01&rft.volume=210&rft.issue=3&rft.spage=813&rft.epage=836&rft.pages=813-836&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-013-0653-5&rft_dat=%3Cproquest_cross%3E3095689481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441214499&rft_id=info:pmid/&rfr_iscdi=true