Boundary Regularity for Solutions to the Linearized Monge–Ampère Equations
We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge–Ampère equations under natural assumptions on the domain, Monge–Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2013-12, Vol.210 (3), p.813-836 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 836 |
---|---|
container_issue | 3 |
container_start_page | 813 |
container_title | Archive for rational mechanics and analysis |
container_volume | 210 |
creator | Le, N. Q. Savin, O. |
description | We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge–Ampère equations under natural assumptions on the domain, Monge–Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov. |
doi_str_mv | 10.1007/s00205-013-0653-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1441214499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095689481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-64bc4d553e75ff7848f9bf2bb486e839cfed3cf1d22bbc5d36c137bf58f8ed843</originalsourceid><addsrcrecordid>eNp1UEtOwzAQtRBIlMIB2FlibfA3cZalKgWpFRKftZX4U1K1cWsni7LiDlyCe3ATToJLWLBhM6OZee-N3gPgnOBLgnF-FTGmWCBMGMKZYEgcgAHhjKYpZ4dggDFmqBA0PwYnMS73I2XZAMyvfdeYMuzgg110qzLU7Q46H-CjX3Vt7ZsIWw_bFwtndWPT-dUaOPfNwn69vY_Wm8-PYOFk25U_2FNw5MpVtGe_fQiebyZP41s0u5_ejUczpBnJWpTxSnMjBLO5cC6XXLqicrSquMysZIV21jDtiKFpp4VhmSYsr5yQTlojORuCi153E_y2s7FVS9-FJr1UhHNCUymKhCI9SgcfY7BObUK9Tl4VwWqfmupTUyk1tU9NicShPScmbHIZ_ij_S_oGwnFx3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441214499</pqid></control><display><type>article</type><title>Boundary Regularity for Solutions to the Linearized Monge–Ampère Equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Le, N. Q. ; Savin, O.</creator><creatorcontrib>Le, N. Q. ; Savin, O.</creatorcontrib><description>We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge–Ampère equations under natural assumptions on the domain, Monge–Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-013-0653-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Complex Systems ; Fluid- and Aerodynamics ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2013-12, Vol.210 (3), p.813-836</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-64bc4d553e75ff7848f9bf2bb486e839cfed3cf1d22bbc5d36c137bf58f8ed843</citedby><cites>FETCH-LOGICAL-c316t-64bc4d553e75ff7848f9bf2bb486e839cfed3cf1d22bbc5d36c137bf58f8ed843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-013-0653-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-013-0653-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Le, N. Q.</creatorcontrib><creatorcontrib>Savin, O.</creatorcontrib><title>Boundary Regularity for Solutions to the Linearized Monge–Ampère Equations</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge–Ampère equations under natural assumptions on the domain, Monge–Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UEtOwzAQtRBIlMIB2FlibfA3cZalKgWpFRKftZX4U1K1cWsni7LiDlyCe3ATToJLWLBhM6OZee-N3gPgnOBLgnF-FTGmWCBMGMKZYEgcgAHhjKYpZ4dggDFmqBA0PwYnMS73I2XZAMyvfdeYMuzgg110qzLU7Q46H-CjX3Vt7ZsIWw_bFwtndWPT-dUaOPfNwn69vY_Wm8-PYOFk25U_2FNw5MpVtGe_fQiebyZP41s0u5_ejUczpBnJWpTxSnMjBLO5cC6XXLqicrSquMysZIV21jDtiKFpp4VhmSYsr5yQTlojORuCi153E_y2s7FVS9-FJr1UhHNCUymKhCI9SgcfY7BObUK9Tl4VwWqfmupTUyk1tU9NicShPScmbHIZ_ij_S_oGwnFx3Q</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Le, N. Q.</creator><creator>Savin, O.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20131201</creationdate><title>Boundary Regularity for Solutions to the Linearized Monge–Ampère Equations</title><author>Le, N. Q. ; Savin, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-64bc4d553e75ff7848f9bf2bb486e839cfed3cf1d22bbc5d36c137bf58f8ed843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, N. Q.</creatorcontrib><creatorcontrib>Savin, O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, N. Q.</au><au>Savin, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary Regularity for Solutions to the Linearized Monge–Ampère Equations</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>210</volume><issue>3</issue><spage>813</spage><epage>836</epage><pages>813-836</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge–Ampère equations under natural assumptions on the domain, Monge–Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-013-0653-5</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2013-12, Vol.210 (3), p.813-836 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_journals_1441214499 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classical Mechanics Complex Systems Fluid- and Aerodynamics Mathematical and Computational Physics Physics Physics and Astronomy Theoretical |
title | Boundary Regularity for Solutions to the Linearized Monge–Ampère Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20Regularity%20for%20Solutions%20to%20the%20Linearized%20Monge%E2%80%93Amp%C3%A8re%20Equations&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Le,%20N.%20Q.&rft.date=2013-12-01&rft.volume=210&rft.issue=3&rft.spage=813&rft.epage=836&rft.pages=813-836&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-013-0653-5&rft_dat=%3Cproquest_cross%3E3095689481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441214499&rft_id=info:pmid/&rfr_iscdi=true |