Adaptive Estimation of Missing Environmental Parameters Based on Radial Basis Function Neural Networks

This paper has been presented the adaptive estimation for missing environmental parameters for short duration. The Radial Basis Function based Artificial Neural Network technique has been discussed and used this technique the estimation of the missing environmental parameters. This work assumes that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Computer Theory and Engineering 2013-04, Vol.5 (2), p.238-241
Hauptverfasser: Kumar, Anuj, Kim, Hiesik
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue 2
container_start_page 238
container_title International Journal of Computer Theory and Engineering
container_volume 5
creator Kumar, Anuj
Kim, Hiesik
description This paper has been presented the adaptive estimation for missing environmental parameters for short duration. The Radial Basis Function based Artificial Neural Network technique has been discussed and used this technique the estimation of the missing environmental parameters. This work assumes that data are missing completely at random. This implies that we expect the missing values or input vector to be deducible in some complex manner from the remaining data. Two cases of missing parameters have been considered, in first case one parameter is missing, and in second case two parameters are missing.
doi_str_mv 10.7763/IJCTE.2013.V5.685
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1440371992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093944841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1135-c6676c3fbe481db8a52af4ed122d571161d70860dd5af615b54ebeaf0a66f7fa3</originalsourceid><addsrcrecordid>eNotkMFOwzAMhnMAiWnsAbhF4twSN03SHsfUwdAYCI1do7RJUGBrR9IO8fZkGyfL9qff8ofQDZBUCE7vFk-zdZVmBGi6YSkv2AUagShpUsTZFZqE4GoChJcZ8GyE7FSrfe8OBlehdzvVu67FncXPLoLtB67ag_NduzNtr7b4VXm1M73xAd-rYDSO8JvSLq5i7wKeD21ziliZwcfpyvQ_nf8K1-jSqm0wk_86Ru_zaj17TJYvD4vZdJk0AJQlDeeCN9TWJi9A14VimbK50ZBlmgkADlqQghOtmbIcWM1yUxtlieLcCqvoGN2ec_e--x5M6OVnN_g2npSQ54QKKMssUnCmGt-F4I2Vex9_978SiDxalCeL8mhRbpiMFukfXJBo3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440371992</pqid></control><display><type>article</type><title>Adaptive Estimation of Missing Environmental Parameters Based on Radial Basis Function Neural Networks</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kumar, Anuj ; Kim, Hiesik</creator><creatorcontrib>Kumar, Anuj ; Kim, Hiesik</creatorcontrib><description>This paper has been presented the adaptive estimation for missing environmental parameters for short duration. The Radial Basis Function based Artificial Neural Network technique has been discussed and used this technique the estimation of the missing environmental parameters. This work assumes that data are missing completely at random. This implies that we expect the missing values or input vector to be deducible in some complex manner from the remaining data. Two cases of missing parameters have been considered, in first case one parameter is missing, and in second case two parameters are missing.</description><identifier>ISSN: 1793-8201</identifier><identifier>DOI: 10.7763/IJCTE.2013.V5.685</identifier><language>eng</language><publisher>Singapore: IACSIT Press</publisher><ispartof>International Journal of Computer Theory and Engineering, 2013-04, Vol.5 (2), p.238-241</ispartof><rights>Copyright IACSIT Press Apr 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1135-c6676c3fbe481db8a52af4ed122d571161d70860dd5af615b54ebeaf0a66f7fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Anuj</creatorcontrib><creatorcontrib>Kim, Hiesik</creatorcontrib><title>Adaptive Estimation of Missing Environmental Parameters Based on Radial Basis Function Neural Networks</title><title>International Journal of Computer Theory and Engineering</title><description>This paper has been presented the adaptive estimation for missing environmental parameters for short duration. The Radial Basis Function based Artificial Neural Network technique has been discussed and used this technique the estimation of the missing environmental parameters. This work assumes that data are missing completely at random. This implies that we expect the missing values or input vector to be deducible in some complex manner from the remaining data. Two cases of missing parameters have been considered, in first case one parameter is missing, and in second case two parameters are missing.</description><issn>1793-8201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkMFOwzAMhnMAiWnsAbhF4twSN03SHsfUwdAYCI1do7RJUGBrR9IO8fZkGyfL9qff8ofQDZBUCE7vFk-zdZVmBGi6YSkv2AUagShpUsTZFZqE4GoChJcZ8GyE7FSrfe8OBlehdzvVu67FncXPLoLtB67ag_NduzNtr7b4VXm1M73xAd-rYDSO8JvSLq5i7wKeD21ziliZwcfpyvQ_nf8K1-jSqm0wk_86Ru_zaj17TJYvD4vZdJk0AJQlDeeCN9TWJi9A14VimbK50ZBlmgkADlqQghOtmbIcWM1yUxtlieLcCqvoGN2ec_e--x5M6OVnN_g2npSQ54QKKMssUnCmGt-F4I2Vex9_978SiDxalCeL8mhRbpiMFukfXJBo3w</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Kumar, Anuj</creator><creator>Kim, Hiesik</creator><general>IACSIT Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130401</creationdate><title>Adaptive Estimation of Missing Environmental Parameters Based on Radial Basis Function Neural Networks</title><author>Kumar, Anuj ; Kim, Hiesik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1135-c6676c3fbe481db8a52af4ed122d571161d70860dd5af615b54ebeaf0a66f7fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Anuj</creatorcontrib><creatorcontrib>Kim, Hiesik</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Journal of Computer Theory and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Anuj</au><au>Kim, Hiesik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Estimation of Missing Environmental Parameters Based on Radial Basis Function Neural Networks</atitle><jtitle>International Journal of Computer Theory and Engineering</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>5</volume><issue>2</issue><spage>238</spage><epage>241</epage><pages>238-241</pages><issn>1793-8201</issn><abstract>This paper has been presented the adaptive estimation for missing environmental parameters for short duration. The Radial Basis Function based Artificial Neural Network technique has been discussed and used this technique the estimation of the missing environmental parameters. This work assumes that data are missing completely at random. This implies that we expect the missing values or input vector to be deducible in some complex manner from the remaining data. Two cases of missing parameters have been considered, in first case one parameter is missing, and in second case two parameters are missing.</abstract><cop>Singapore</cop><pub>IACSIT Press</pub><doi>10.7763/IJCTE.2013.V5.685</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1793-8201
ispartof International Journal of Computer Theory and Engineering, 2013-04, Vol.5 (2), p.238-241
issn 1793-8201
language eng
recordid cdi_proquest_journals_1440371992
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Adaptive Estimation of Missing Environmental Parameters Based on Radial Basis Function Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Estimation%20of%20Missing%20Environmental%20Parameters%20Based%20on%20Radial%20Basis%20Function%20Neural%20Networks&rft.jtitle=International%20Journal%20of%20Computer%20Theory%20and%20Engineering&rft.au=Kumar,%20Anuj&rft.date=2013-04-01&rft.volume=5&rft.issue=2&rft.spage=238&rft.epage=241&rft.pages=238-241&rft.issn=1793-8201&rft_id=info:doi/10.7763/IJCTE.2013.V5.685&rft_dat=%3Cproquest_cross%3E3093944841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440371992&rft_id=info:pmid/&rfr_iscdi=true