Adaptive Estimation of Missing Environmental Parameters Based on Radial Basis Function Neural Networks
This paper has been presented the adaptive estimation for missing environmental parameters for short duration. The Radial Basis Function based Artificial Neural Network technique has been discussed and used this technique the estimation of the missing environmental parameters. This work assumes that...
Gespeichert in:
Veröffentlicht in: | International Journal of Computer Theory and Engineering 2013-04, Vol.5 (2), p.238-241 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | 2 |
container_start_page | 238 |
container_title | International Journal of Computer Theory and Engineering |
container_volume | 5 |
creator | Kumar, Anuj Kim, Hiesik |
description | This paper has been presented the adaptive estimation for missing environmental parameters for short duration. The Radial Basis Function based Artificial Neural Network technique has been discussed and used this technique the estimation of the missing environmental parameters. This work assumes that data are missing completely at random. This implies that we expect the missing values or input vector to be deducible in some complex manner from the remaining data. Two cases of missing parameters have been considered, in first case one parameter is missing, and in second case two parameters are missing. |
doi_str_mv | 10.7763/IJCTE.2013.V5.685 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1440371992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093944841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1135-c6676c3fbe481db8a52af4ed122d571161d70860dd5af615b54ebeaf0a66f7fa3</originalsourceid><addsrcrecordid>eNotkMFOwzAMhnMAiWnsAbhF4twSN03SHsfUwdAYCI1do7RJUGBrR9IO8fZkGyfL9qff8ofQDZBUCE7vFk-zdZVmBGi6YSkv2AUagShpUsTZFZqE4GoChJcZ8GyE7FSrfe8OBlehdzvVu67FncXPLoLtB67ag_NduzNtr7b4VXm1M73xAd-rYDSO8JvSLq5i7wKeD21ziliZwcfpyvQ_nf8K1-jSqm0wk_86Ru_zaj17TJYvD4vZdJk0AJQlDeeCN9TWJi9A14VimbK50ZBlmgkADlqQghOtmbIcWM1yUxtlieLcCqvoGN2ec_e--x5M6OVnN_g2npSQ54QKKMssUnCmGt-F4I2Vex9_978SiDxalCeL8mhRbpiMFukfXJBo3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440371992</pqid></control><display><type>article</type><title>Adaptive Estimation of Missing Environmental Parameters Based on Radial Basis Function Neural Networks</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kumar, Anuj ; Kim, Hiesik</creator><creatorcontrib>Kumar, Anuj ; Kim, Hiesik</creatorcontrib><description>This paper has been presented the adaptive estimation for missing environmental parameters for short duration. The Radial Basis Function based Artificial Neural Network technique has been discussed and used this technique the estimation of the missing environmental parameters. This work assumes that data are missing completely at random. This implies that we expect the missing values or input vector to be deducible in some complex manner from the remaining data. Two cases of missing parameters have been considered, in first case one parameter is missing, and in second case two parameters are missing.</description><identifier>ISSN: 1793-8201</identifier><identifier>DOI: 10.7763/IJCTE.2013.V5.685</identifier><language>eng</language><publisher>Singapore: IACSIT Press</publisher><ispartof>International Journal of Computer Theory and Engineering, 2013-04, Vol.5 (2), p.238-241</ispartof><rights>Copyright IACSIT Press Apr 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1135-c6676c3fbe481db8a52af4ed122d571161d70860dd5af615b54ebeaf0a66f7fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Anuj</creatorcontrib><creatorcontrib>Kim, Hiesik</creatorcontrib><title>Adaptive Estimation of Missing Environmental Parameters Based on Radial Basis Function Neural Networks</title><title>International Journal of Computer Theory and Engineering</title><description>This paper has been presented the adaptive estimation for missing environmental parameters for short duration. The Radial Basis Function based Artificial Neural Network technique has been discussed and used this technique the estimation of the missing environmental parameters. This work assumes that data are missing completely at random. This implies that we expect the missing values or input vector to be deducible in some complex manner from the remaining data. Two cases of missing parameters have been considered, in first case one parameter is missing, and in second case two parameters are missing.</description><issn>1793-8201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkMFOwzAMhnMAiWnsAbhF4twSN03SHsfUwdAYCI1do7RJUGBrR9IO8fZkGyfL9qff8ofQDZBUCE7vFk-zdZVmBGi6YSkv2AUagShpUsTZFZqE4GoChJcZ8GyE7FSrfe8OBlehdzvVu67FncXPLoLtB67ag_NduzNtr7b4VXm1M73xAd-rYDSO8JvSLq5i7wKeD21ziliZwcfpyvQ_nf8K1-jSqm0wk_86Ru_zaj17TJYvD4vZdJk0AJQlDeeCN9TWJi9A14VimbK50ZBlmgkADlqQghOtmbIcWM1yUxtlieLcCqvoGN2ec_e--x5M6OVnN_g2npSQ54QKKMssUnCmGt-F4I2Vex9_978SiDxalCeL8mhRbpiMFukfXJBo3w</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Kumar, Anuj</creator><creator>Kim, Hiesik</creator><general>IACSIT Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130401</creationdate><title>Adaptive Estimation of Missing Environmental Parameters Based on Radial Basis Function Neural Networks</title><author>Kumar, Anuj ; Kim, Hiesik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1135-c6676c3fbe481db8a52af4ed122d571161d70860dd5af615b54ebeaf0a66f7fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Anuj</creatorcontrib><creatorcontrib>Kim, Hiesik</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Journal of Computer Theory and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Anuj</au><au>Kim, Hiesik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Estimation of Missing Environmental Parameters Based on Radial Basis Function Neural Networks</atitle><jtitle>International Journal of Computer Theory and Engineering</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>5</volume><issue>2</issue><spage>238</spage><epage>241</epage><pages>238-241</pages><issn>1793-8201</issn><abstract>This paper has been presented the adaptive estimation for missing environmental parameters for short duration. The Radial Basis Function based Artificial Neural Network technique has been discussed and used this technique the estimation of the missing environmental parameters. This work assumes that data are missing completely at random. This implies that we expect the missing values or input vector to be deducible in some complex manner from the remaining data. Two cases of missing parameters have been considered, in first case one parameter is missing, and in second case two parameters are missing.</abstract><cop>Singapore</cop><pub>IACSIT Press</pub><doi>10.7763/IJCTE.2013.V5.685</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1793-8201 |
ispartof | International Journal of Computer Theory and Engineering, 2013-04, Vol.5 (2), p.238-241 |
issn | 1793-8201 |
language | eng |
recordid | cdi_proquest_journals_1440371992 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Adaptive Estimation of Missing Environmental Parameters Based on Radial Basis Function Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Estimation%20of%20Missing%20Environmental%20Parameters%20Based%20on%20Radial%20Basis%20Function%20Neural%20Networks&rft.jtitle=International%20Journal%20of%20Computer%20Theory%20and%20Engineering&rft.au=Kumar,%20Anuj&rft.date=2013-04-01&rft.volume=5&rft.issue=2&rft.spage=238&rft.epage=241&rft.pages=238-241&rft.issn=1793-8201&rft_id=info:doi/10.7763/IJCTE.2013.V5.685&rft_dat=%3Cproquest_cross%3E3093944841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440371992&rft_id=info:pmid/&rfr_iscdi=true |