Diagnosis of Coronary Artery Disease Using Artificial Bee Colony and K-Nearest Neighbor Algorithms

Artificial bee colony (ABC) is one of the swarmintelligence optimization algorithms, inspired by foraging anddance behaviors of real honey bee colonies. This study is aninstance of a hybrid algorithm using ABC together withk-nearest neighbor algorithm on diagnosis of coronary arterydisease employing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer and communication engineering 2013, Vol.2 (1), p.56-59
1. Verfasser: Babaoğlu, İsmail
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 56
container_title International journal of computer and communication engineering
container_volume 2
creator Babaoğlu, İsmail
description Artificial bee colony (ABC) is one of the swarmintelligence optimization algorithms, inspired by foraging anddance behaviors of real honey bee colonies. This study is aninstance of a hybrid algorithm using ABC together withk-nearest neighbor algorithm on diagnosis of coronary arterydisease employing exercises stress test data. The study dataset iscomposed of 134 healthy and 346 unhealthy totally 480 patients.On the proposed algorithm two centroid vectors are obtainedconcerning one for healthy patients and the other for unhealthypatients utilizing ABC for the training part of the dataset. Then,the test part of the dataset is classified using k-nearest neighboralgorithm. The results obtained by the proposed technique showthat this hybrid algorithm could be used as an alternativeclassifier on diagnosis of coronary artery disease employingexercise stress test data.
doi_str_mv 10.7763/IJCCE.2013.V2.136
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1439561692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090685821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1182-1cd2410aa5d313deee5e581252b593b1d29085514c9f2ece1cd4fec25482f7ea3</originalsourceid><addsrcrecordid>eNpNkMtOwkAUQCdGE4nyAe4mcd3aO48-llhQUYIbYTuZtrdlSOngDCz4ewdx4eo-cnIfh5AHSOIsS_nT_L0sZzFLgMdrFgNPr8goVEnEM8Gv_-W3ZOz9NkkCKSAXMCLV1OhusN54altaWmcH7U504g4YwtR41B7pypuhOzdNa2qje_qMGODeDieqh4Z-REvUDv2BLtF0m8o6Ouk768xhs_P35KbVvcfxX7wjq5fZV_kWLT5f5-VkEdUAOYugbpiARGvZcOANIkqUOTDJKlnwChpWJLmUIOqiZVhj4EWLNZMiZ22Gmt-Rx8vcvbPfx3CM2tqjG8JKBYIXMoW0YIGCC1U7673DVu2d2YWfFSTqbFP92lRnm2rNVLDJfwCkw2eS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439561692</pqid></control><display><type>article</type><title>Diagnosis of Coronary Artery Disease Using Artificial Bee Colony and K-Nearest Neighbor Algorithms</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Babaoğlu, İsmail</creator><creatorcontrib>Babaoğlu, İsmail</creatorcontrib><description>Artificial bee colony (ABC) is one of the swarmintelligence optimization algorithms, inspired by foraging anddance behaviors of real honey bee colonies. This study is aninstance of a hybrid algorithm using ABC together withk-nearest neighbor algorithm on diagnosis of coronary arterydisease employing exercises stress test data. The study dataset iscomposed of 134 healthy and 346 unhealthy totally 480 patients.On the proposed algorithm two centroid vectors are obtainedconcerning one for healthy patients and the other for unhealthypatients utilizing ABC for the training part of the dataset. Then,the test part of the dataset is classified using k-nearest neighboralgorithm. The results obtained by the proposed technique showthat this hybrid algorithm could be used as an alternativeclassifier on diagnosis of coronary artery disease employingexercise stress test data.</description><identifier>ISSN: 2010-3743</identifier><identifier>EISSN: 2010-3743</identifier><identifier>DOI: 10.7763/IJCCE.2013.V2.136</identifier><language>eng</language><publisher>Singapore: IACSIT Press</publisher><ispartof>International journal of computer and communication engineering, 2013, Vol.2 (1), p.56-59</ispartof><rights>Copyright IACSIT Press Jan 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1182-1cd2410aa5d313deee5e581252b593b1d29085514c9f2ece1cd4fec25482f7ea3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Babaoğlu, İsmail</creatorcontrib><title>Diagnosis of Coronary Artery Disease Using Artificial Bee Colony and K-Nearest Neighbor Algorithms</title><title>International journal of computer and communication engineering</title><description>Artificial bee colony (ABC) is one of the swarmintelligence optimization algorithms, inspired by foraging anddance behaviors of real honey bee colonies. This study is aninstance of a hybrid algorithm using ABC together withk-nearest neighbor algorithm on diagnosis of coronary arterydisease employing exercises stress test data. The study dataset iscomposed of 134 healthy and 346 unhealthy totally 480 patients.On the proposed algorithm two centroid vectors are obtainedconcerning one for healthy patients and the other for unhealthypatients utilizing ABC for the training part of the dataset. Then,the test part of the dataset is classified using k-nearest neighboralgorithm. The results obtained by the proposed technique showthat this hybrid algorithm could be used as an alternativeclassifier on diagnosis of coronary artery disease employingexercise stress test data.</description><issn>2010-3743</issn><issn>2010-3743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwkAUQCdGE4nyAe4mcd3aO48-llhQUYIbYTuZtrdlSOngDCz4ewdx4eo-cnIfh5AHSOIsS_nT_L0sZzFLgMdrFgNPr8goVEnEM8Gv_-W3ZOz9NkkCKSAXMCLV1OhusN54altaWmcH7U504g4YwtR41B7pypuhOzdNa2qje_qMGODeDieqh4Z-REvUDv2BLtF0m8o6Ouk768xhs_P35KbVvcfxX7wjq5fZV_kWLT5f5-VkEdUAOYugbpiARGvZcOANIkqUOTDJKlnwChpWJLmUIOqiZVhj4EWLNZMiZ22Gmt-Rx8vcvbPfx3CM2tqjG8JKBYIXMoW0YIGCC1U7673DVu2d2YWfFSTqbFP92lRnm2rNVLDJfwCkw2eS</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Babaoğlu, İsmail</creator><general>IACSIT Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2013</creationdate><title>Diagnosis of Coronary Artery Disease Using Artificial Bee Colony and K-Nearest Neighbor Algorithms</title><author>Babaoğlu, İsmail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1182-1cd2410aa5d313deee5e581252b593b1d29085514c9f2ece1cd4fec25482f7ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babaoğlu, İsmail</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer and communication engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babaoğlu, İsmail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosis of Coronary Artery Disease Using Artificial Bee Colony and K-Nearest Neighbor Algorithms</atitle><jtitle>International journal of computer and communication engineering</jtitle><date>2013</date><risdate>2013</risdate><volume>2</volume><issue>1</issue><spage>56</spage><epage>59</epage><pages>56-59</pages><issn>2010-3743</issn><eissn>2010-3743</eissn><abstract>Artificial bee colony (ABC) is one of the swarmintelligence optimization algorithms, inspired by foraging anddance behaviors of real honey bee colonies. This study is aninstance of a hybrid algorithm using ABC together withk-nearest neighbor algorithm on diagnosis of coronary arterydisease employing exercises stress test data. The study dataset iscomposed of 134 healthy and 346 unhealthy totally 480 patients.On the proposed algorithm two centroid vectors are obtainedconcerning one for healthy patients and the other for unhealthypatients utilizing ABC for the training part of the dataset. Then,the test part of the dataset is classified using k-nearest neighboralgorithm. The results obtained by the proposed technique showthat this hybrid algorithm could be used as an alternativeclassifier on diagnosis of coronary artery disease employingexercise stress test data.</abstract><cop>Singapore</cop><pub>IACSIT Press</pub><doi>10.7763/IJCCE.2013.V2.136</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2010-3743
ispartof International journal of computer and communication engineering, 2013, Vol.2 (1), p.56-59
issn 2010-3743
2010-3743
language eng
recordid cdi_proquest_journals_1439561692
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Diagnosis of Coronary Artery Disease Using Artificial Bee Colony and K-Nearest Neighbor Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosis%20of%20Coronary%20Artery%20Disease%20Using%20Artificial%20Bee%20Colony%20and%20K-Nearest%20Neighbor%20Algorithms&rft.jtitle=International%20journal%20of%20computer%20and%20communication%20engineering&rft.au=Babao%C4%9Flu,%20%C4%B0smail&rft.date=2013&rft.volume=2&rft.issue=1&rft.spage=56&rft.epage=59&rft.pages=56-59&rft.issn=2010-3743&rft.eissn=2010-3743&rft_id=info:doi/10.7763/IJCCE.2013.V2.136&rft_dat=%3Cproquest_cross%3E3090685821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439561692&rft_id=info:pmid/&rfr_iscdi=true