An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data
The paper proposes a rear-end collision warning system for drivers, where the collision risk is adaptively set from driving signals. The system employs the inverse of the time-to-collision with a constant relative acceleration as the risk and the one-class support vector machine as the anomaly detec...
Gespeichert in:
Veröffentlicht in: | Shisutemu Seigyo Jouhou Gakkai rombunshi Control and Information Engineers, 2011, Vol.24(8), pp.193-199 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 8 |
container_start_page | 193 |
container_title | Shisutemu Seigyo Jouhou Gakkai rombunshi |
container_volume | 24 |
creator | Ikeda, Kazushi Mima, Hiroki Inoue, Yuta Shibata, Tomohiro Fukaya, Naoki Hitomi, Kentaro Bando, Takashi |
description | The paper proposes a rear-end collision warning system for drivers, where the collision risk is adaptively set from driving signals. The system employs the inverse of the time-to-collision with a constant relative acceleration as the risk and the one-class support vector machine as the anomaly detector. The system also utilizes brake sequences for outliers detection. When a brake sequence has a low likelihood with respect to trained hidden Markov models, the driving data during the sequence are removed from the training dataset. This data selection is confirmed to increase the robustness of the system by computer simulations. |
doi_str_mv | 10.5687/iscie.24.193 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1439117330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3088794321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1613-9e0fdc2836f0e901fed6190ffcdee47fea7f167eb91adb944a8e5da0c1de69143</originalsourceid><addsrcrecordid>eNpF0MtKAzEUBuAgCpbanQ8QcOvUnMlcl6WtFxAUregunGZObGScqUkq9O1NW9FNAjlf_pCfsXMQ47yoyivrtaVxmo2hlkdskEKVJxXA2zEbgMzSJC-K6pSNvLdLIaHMAGQ-YOtJxycNroP9Jv5E6JJ51_Bp37bW277jr-g6273z560P9MlN7_jMRes8X6ww8LkP9hMD-f3xTj6u0BPHmPJMLekQoUO7D5lhwDN2YrD1NPrdh-zler6Y3ib3Dzd308l9oqEAmdQkTKPTShZGUC3AUFNALYzRDVFWGsLSQFHSsgZslnWWYUV5g0JDQ0UNmRyyi0Pu2vVfG_JBffQb18UnVZzWAKWUIqrLg9Ku996RUWsX_-O2CoTa1ar2tao0U7HWyCcH_uEDvtMfRhesbukfV4cl3vmb6RU6RZ38AWwihJ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439117330</pqid></control><display><type>article</type><title>An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ikeda, Kazushi ; Mima, Hiroki ; Inoue, Yuta ; Shibata, Tomohiro ; Fukaya, Naoki ; Hitomi, Kentaro ; Bando, Takashi</creator><creatorcontrib>Ikeda, Kazushi ; Mima, Hiroki ; Inoue, Yuta ; Shibata, Tomohiro ; Fukaya, Naoki ; Hitomi, Kentaro ; Bando, Takashi</creatorcontrib><description>The paper proposes a rear-end collision warning system for drivers, where the collision risk is adaptively set from driving signals. The system employs the inverse of the time-to-collision with a constant relative acceleration as the risk and the one-class support vector machine as the anomaly detector. The system also utilizes brake sequences for outliers detection. When a brake sequence has a low likelihood with respect to trained hidden Markov models, the driving data during the sequence are removed from the training dataset. This data selection is confirmed to increase the robustness of the system by computer simulations.</description><identifier>ISSN: 1342-5668</identifier><identifier>EISSN: 2185-811X</identifier><identifier>DOI: 10.5687/iscie.24.193</identifier><language>eng</language><publisher>Kyoto: THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)</publisher><subject>advanced driver assistance system ; hidden Markov model ; machine learning ; risk index ; support vector machine</subject><ispartof>Transactions of the Institute of Systems, Control and Information Engineers, 2011, Vol.24(8), pp.193-199</ispartof><rights>2011 The Institute of Systems, Control and Information Engineers</rights><rights>Copyright Japan Science and Technology Agency 2011</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1613-9e0fdc2836f0e901fed6190ffcdee47fea7f167eb91adb944a8e5da0c1de69143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1878,4011,27905,27906,27907</link.rule.ids></links><search><creatorcontrib>Ikeda, Kazushi</creatorcontrib><creatorcontrib>Mima, Hiroki</creatorcontrib><creatorcontrib>Inoue, Yuta</creatorcontrib><creatorcontrib>Shibata, Tomohiro</creatorcontrib><creatorcontrib>Fukaya, Naoki</creatorcontrib><creatorcontrib>Hitomi, Kentaro</creatorcontrib><creatorcontrib>Bando, Takashi</creatorcontrib><title>An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data</title><title>Shisutemu Seigyo Jouhou Gakkai rombunshi</title><addtitle>Transactions of the Institute of Systems, Control and Information Engineers</addtitle><description>The paper proposes a rear-end collision warning system for drivers, where the collision risk is adaptively set from driving signals. The system employs the inverse of the time-to-collision with a constant relative acceleration as the risk and the one-class support vector machine as the anomaly detector. The system also utilizes brake sequences for outliers detection. When a brake sequence has a low likelihood with respect to trained hidden Markov models, the driving data during the sequence are removed from the training dataset. This data selection is confirmed to increase the robustness of the system by computer simulations.</description><subject>advanced driver assistance system</subject><subject>hidden Markov model</subject><subject>machine learning</subject><subject>risk index</subject><subject>support vector machine</subject><issn>1342-5668</issn><issn>2185-811X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpF0MtKAzEUBuAgCpbanQ8QcOvUnMlcl6WtFxAUregunGZObGScqUkq9O1NW9FNAjlf_pCfsXMQ47yoyivrtaVxmo2hlkdskEKVJxXA2zEbgMzSJC-K6pSNvLdLIaHMAGQ-YOtJxycNroP9Jv5E6JJ51_Bp37bW277jr-g6273z560P9MlN7_jMRes8X6ww8LkP9hMD-f3xTj6u0BPHmPJMLekQoUO7D5lhwDN2YrD1NPrdh-zler6Y3ib3Dzd308l9oqEAmdQkTKPTShZGUC3AUFNALYzRDVFWGsLSQFHSsgZslnWWYUV5g0JDQ0UNmRyyi0Pu2vVfG_JBffQb18UnVZzWAKWUIqrLg9Ku996RUWsX_-O2CoTa1ar2tao0U7HWyCcH_uEDvtMfRhesbukfV4cl3vmb6RU6RZ38AWwihJ0</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Ikeda, Kazushi</creator><creator>Mima, Hiroki</creator><creator>Inoue, Yuta</creator><creator>Shibata, Tomohiro</creator><creator>Fukaya, Naoki</creator><creator>Hitomi, Kentaro</creator><creator>Bando, Takashi</creator><general>THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>2011</creationdate><title>An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data</title><author>Ikeda, Kazushi ; Mima, Hiroki ; Inoue, Yuta ; Shibata, Tomohiro ; Fukaya, Naoki ; Hitomi, Kentaro ; Bando, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1613-9e0fdc2836f0e901fed6190ffcdee47fea7f167eb91adb944a8e5da0c1de69143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>advanced driver assistance system</topic><topic>hidden Markov model</topic><topic>machine learning</topic><topic>risk index</topic><topic>support vector machine</topic><toplevel>online_resources</toplevel><creatorcontrib>Ikeda, Kazushi</creatorcontrib><creatorcontrib>Mima, Hiroki</creatorcontrib><creatorcontrib>Inoue, Yuta</creatorcontrib><creatorcontrib>Shibata, Tomohiro</creatorcontrib><creatorcontrib>Fukaya, Naoki</creatorcontrib><creatorcontrib>Hitomi, Kentaro</creatorcontrib><creatorcontrib>Bando, Takashi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Shisutemu Seigyo Jouhou Gakkai rombunshi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikeda, Kazushi</au><au>Mima, Hiroki</au><au>Inoue, Yuta</au><au>Shibata, Tomohiro</au><au>Fukaya, Naoki</au><au>Hitomi, Kentaro</au><au>Bando, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data</atitle><jtitle>Shisutemu Seigyo Jouhou Gakkai rombunshi</jtitle><addtitle>Transactions of the Institute of Systems, Control and Information Engineers</addtitle><date>2011</date><risdate>2011</risdate><volume>24</volume><issue>8</issue><spage>193</spage><epage>199</epage><pages>193-199</pages><issn>1342-5668</issn><eissn>2185-811X</eissn><abstract>The paper proposes a rear-end collision warning system for drivers, where the collision risk is adaptively set from driving signals. The system employs the inverse of the time-to-collision with a constant relative acceleration as the risk and the one-class support vector machine as the anomaly detector. The system also utilizes brake sequences for outliers detection. When a brake sequence has a low likelihood with respect to trained hidden Markov models, the driving data during the sequence are removed from the training dataset. This data selection is confirmed to increase the robustness of the system by computer simulations.</abstract><cop>Kyoto</cop><pub>THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)</pub><doi>10.5687/iscie.24.193</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1342-5668 |
ispartof | Transactions of the Institute of Systems, Control and Information Engineers, 2011, Vol.24(8), pp.193-199 |
issn | 1342-5668 2185-811X |
language | eng |
recordid | cdi_proquest_journals_1439117330 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | advanced driver assistance system hidden Markov model machine learning risk index support vector machine |
title | An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Rear-End%20Collision%20Warning%20System%20for%20Drivers%20That%20Estimates%20Driving%20Phase%20and%20Selects%20Training%20Data&rft.jtitle=Shisutemu%20Seigyo%20Jouhou%20Gakkai%20rombunshi&rft.au=Ikeda,%20Kazushi&rft.date=2011&rft.volume=24&rft.issue=8&rft.spage=193&rft.epage=199&rft.pages=193-199&rft.issn=1342-5668&rft.eissn=2185-811X&rft_id=info:doi/10.5687/iscie.24.193&rft_dat=%3Cproquest_cross%3E3088794321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439117330&rft_id=info:pmid/&rfr_iscdi=true |