An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data

The paper proposes a rear-end collision warning system for drivers, where the collision risk is adaptively set from driving signals. The system employs the inverse of the time-to-collision with a constant relative acceleration as the risk and the one-class support vector machine as the anomaly detec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shisutemu Seigyo Jouhou Gakkai rombunshi Control and Information Engineers, 2011, Vol.24(8), pp.193-199
Hauptverfasser: Ikeda, Kazushi, Mima, Hiroki, Inoue, Yuta, Shibata, Tomohiro, Fukaya, Naoki, Hitomi, Kentaro, Bando, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue 8
container_start_page 193
container_title Shisutemu Seigyo Jouhou Gakkai rombunshi
container_volume 24
creator Ikeda, Kazushi
Mima, Hiroki
Inoue, Yuta
Shibata, Tomohiro
Fukaya, Naoki
Hitomi, Kentaro
Bando, Takashi
description The paper proposes a rear-end collision warning system for drivers, where the collision risk is adaptively set from driving signals. The system employs the inverse of the time-to-collision with a constant relative acceleration as the risk and the one-class support vector machine as the anomaly detector. The system also utilizes brake sequences for outliers detection. When a brake sequence has a low likelihood with respect to trained hidden Markov models, the driving data during the sequence are removed from the training dataset. This data selection is confirmed to increase the robustness of the system by computer simulations.
doi_str_mv 10.5687/iscie.24.193
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1439117330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3088794321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1613-9e0fdc2836f0e901fed6190ffcdee47fea7f167eb91adb944a8e5da0c1de69143</originalsourceid><addsrcrecordid>eNpF0MtKAzEUBuAgCpbanQ8QcOvUnMlcl6WtFxAUregunGZObGScqUkq9O1NW9FNAjlf_pCfsXMQ47yoyivrtaVxmo2hlkdskEKVJxXA2zEbgMzSJC-K6pSNvLdLIaHMAGQ-YOtJxycNroP9Jv5E6JJ51_Bp37bW277jr-g6273z560P9MlN7_jMRes8X6ww8LkP9hMD-f3xTj6u0BPHmPJMLekQoUO7D5lhwDN2YrD1NPrdh-zler6Y3ib3Dzd308l9oqEAmdQkTKPTShZGUC3AUFNALYzRDVFWGsLSQFHSsgZslnWWYUV5g0JDQ0UNmRyyi0Pu2vVfG_JBffQb18UnVZzWAKWUIqrLg9Ku996RUWsX_-O2CoTa1ar2tao0U7HWyCcH_uEDvtMfRhesbukfV4cl3vmb6RU6RZ38AWwihJ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439117330</pqid></control><display><type>article</type><title>An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ikeda, Kazushi ; Mima, Hiroki ; Inoue, Yuta ; Shibata, Tomohiro ; Fukaya, Naoki ; Hitomi, Kentaro ; Bando, Takashi</creator><creatorcontrib>Ikeda, Kazushi ; Mima, Hiroki ; Inoue, Yuta ; Shibata, Tomohiro ; Fukaya, Naoki ; Hitomi, Kentaro ; Bando, Takashi</creatorcontrib><description>The paper proposes a rear-end collision warning system for drivers, where the collision risk is adaptively set from driving signals. The system employs the inverse of the time-to-collision with a constant relative acceleration as the risk and the one-class support vector machine as the anomaly detector. The system also utilizes brake sequences for outliers detection. When a brake sequence has a low likelihood with respect to trained hidden Markov models, the driving data during the sequence are removed from the training dataset. This data selection is confirmed to increase the robustness of the system by computer simulations.</description><identifier>ISSN: 1342-5668</identifier><identifier>EISSN: 2185-811X</identifier><identifier>DOI: 10.5687/iscie.24.193</identifier><language>eng</language><publisher>Kyoto: THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)</publisher><subject>advanced driver assistance system ; hidden Markov model ; machine learning ; risk index ; support vector machine</subject><ispartof>Transactions of the Institute of Systems, Control and Information Engineers, 2011, Vol.24(8), pp.193-199</ispartof><rights>2011 The Institute of Systems, Control and Information Engineers</rights><rights>Copyright Japan Science and Technology Agency 2011</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1613-9e0fdc2836f0e901fed6190ffcdee47fea7f167eb91adb944a8e5da0c1de69143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1878,4011,27905,27906,27907</link.rule.ids></links><search><creatorcontrib>Ikeda, Kazushi</creatorcontrib><creatorcontrib>Mima, Hiroki</creatorcontrib><creatorcontrib>Inoue, Yuta</creatorcontrib><creatorcontrib>Shibata, Tomohiro</creatorcontrib><creatorcontrib>Fukaya, Naoki</creatorcontrib><creatorcontrib>Hitomi, Kentaro</creatorcontrib><creatorcontrib>Bando, Takashi</creatorcontrib><title>An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data</title><title>Shisutemu Seigyo Jouhou Gakkai rombunshi</title><addtitle>Transactions of the Institute of Systems, Control and Information Engineers</addtitle><description>The paper proposes a rear-end collision warning system for drivers, where the collision risk is adaptively set from driving signals. The system employs the inverse of the time-to-collision with a constant relative acceleration as the risk and the one-class support vector machine as the anomaly detector. The system also utilizes brake sequences for outliers detection. When a brake sequence has a low likelihood with respect to trained hidden Markov models, the driving data during the sequence are removed from the training dataset. This data selection is confirmed to increase the robustness of the system by computer simulations.</description><subject>advanced driver assistance system</subject><subject>hidden Markov model</subject><subject>machine learning</subject><subject>risk index</subject><subject>support vector machine</subject><issn>1342-5668</issn><issn>2185-811X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpF0MtKAzEUBuAgCpbanQ8QcOvUnMlcl6WtFxAUregunGZObGScqUkq9O1NW9FNAjlf_pCfsXMQ47yoyivrtaVxmo2hlkdskEKVJxXA2zEbgMzSJC-K6pSNvLdLIaHMAGQ-YOtJxycNroP9Jv5E6JJ51_Bp37bW277jr-g6273z560P9MlN7_jMRes8X6ww8LkP9hMD-f3xTj6u0BPHmPJMLekQoUO7D5lhwDN2YrD1NPrdh-zler6Y3ib3Dzd308l9oqEAmdQkTKPTShZGUC3AUFNALYzRDVFWGsLSQFHSsgZslnWWYUV5g0JDQ0UNmRyyi0Pu2vVfG_JBffQb18UnVZzWAKWUIqrLg9Ku996RUWsX_-O2CoTa1ar2tao0U7HWyCcH_uEDvtMfRhesbukfV4cl3vmb6RU6RZ38AWwihJ0</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Ikeda, Kazushi</creator><creator>Mima, Hiroki</creator><creator>Inoue, Yuta</creator><creator>Shibata, Tomohiro</creator><creator>Fukaya, Naoki</creator><creator>Hitomi, Kentaro</creator><creator>Bando, Takashi</creator><general>THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>2011</creationdate><title>An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data</title><author>Ikeda, Kazushi ; Mima, Hiroki ; Inoue, Yuta ; Shibata, Tomohiro ; Fukaya, Naoki ; Hitomi, Kentaro ; Bando, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1613-9e0fdc2836f0e901fed6190ffcdee47fea7f167eb91adb944a8e5da0c1de69143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>advanced driver assistance system</topic><topic>hidden Markov model</topic><topic>machine learning</topic><topic>risk index</topic><topic>support vector machine</topic><toplevel>online_resources</toplevel><creatorcontrib>Ikeda, Kazushi</creatorcontrib><creatorcontrib>Mima, Hiroki</creatorcontrib><creatorcontrib>Inoue, Yuta</creatorcontrib><creatorcontrib>Shibata, Tomohiro</creatorcontrib><creatorcontrib>Fukaya, Naoki</creatorcontrib><creatorcontrib>Hitomi, Kentaro</creatorcontrib><creatorcontrib>Bando, Takashi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Shisutemu Seigyo Jouhou Gakkai rombunshi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikeda, Kazushi</au><au>Mima, Hiroki</au><au>Inoue, Yuta</au><au>Shibata, Tomohiro</au><au>Fukaya, Naoki</au><au>Hitomi, Kentaro</au><au>Bando, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data</atitle><jtitle>Shisutemu Seigyo Jouhou Gakkai rombunshi</jtitle><addtitle>Transactions of the Institute of Systems, Control and Information Engineers</addtitle><date>2011</date><risdate>2011</risdate><volume>24</volume><issue>8</issue><spage>193</spage><epage>199</epage><pages>193-199</pages><issn>1342-5668</issn><eissn>2185-811X</eissn><abstract>The paper proposes a rear-end collision warning system for drivers, where the collision risk is adaptively set from driving signals. The system employs the inverse of the time-to-collision with a constant relative acceleration as the risk and the one-class support vector machine as the anomaly detector. The system also utilizes brake sequences for outliers detection. When a brake sequence has a low likelihood with respect to trained hidden Markov models, the driving data during the sequence are removed from the training dataset. This data selection is confirmed to increase the robustness of the system by computer simulations.</abstract><cop>Kyoto</cop><pub>THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)</pub><doi>10.5687/iscie.24.193</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1342-5668
ispartof Transactions of the Institute of Systems, Control and Information Engineers, 2011, Vol.24(8), pp.193-199
issn 1342-5668
2185-811X
language eng
recordid cdi_proquest_journals_1439117330
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects advanced driver assistance system
hidden Markov model
machine learning
risk index
support vector machine
title An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Rear-End%20Collision%20Warning%20System%20for%20Drivers%20That%20Estimates%20Driving%20Phase%20and%20Selects%20Training%20Data&rft.jtitle=Shisutemu%20Seigyo%20Jouhou%20Gakkai%20rombunshi&rft.au=Ikeda,%20Kazushi&rft.date=2011&rft.volume=24&rft.issue=8&rft.spage=193&rft.epage=199&rft.pages=193-199&rft.issn=1342-5668&rft.eissn=2185-811X&rft_id=info:doi/10.5687/iscie.24.193&rft_dat=%3Cproquest_cross%3E3088794321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439117330&rft_id=info:pmid/&rfr_iscdi=true