An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data

The paper proposes a rear-end collision warning system for drivers, where the collision risk is adaptively set from driving signals. The system employs the inverse of the time-to-collision with a constant relative acceleration as the risk and the one-class support vector machine as the anomaly detec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shisutemu Seigyo Jouhou Gakkai rombunshi Control and Information Engineers, 2011, Vol.24(8), pp.193-199
Hauptverfasser: Ikeda, Kazushi, Mima, Hiroki, Inoue, Yuta, Shibata, Tomohiro, Fukaya, Naoki, Hitomi, Kentaro, Bando, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper proposes a rear-end collision warning system for drivers, where the collision risk is adaptively set from driving signals. The system employs the inverse of the time-to-collision with a constant relative acceleration as the risk and the one-class support vector machine as the anomaly detector. The system also utilizes brake sequences for outliers detection. When a brake sequence has a low likelihood with respect to trained hidden Markov models, the driving data during the sequence are removed from the training dataset. This data selection is confirmed to increase the robustness of the system by computer simulations.
ISSN:1342-5668
2185-811X
DOI:10.5687/iscie.24.193