Mancala Matrices
This paper introduces a new matrix tool for the sowing game Tchoukaillon, which establishes a relationship between board vectors and move vectors that does not depend on actually playing the game. This allows for simpler proofs than currently appear in the literature for two key theorems, as well as...
Gespeichert in:
Veröffentlicht in: | The College mathematics journal 2013-09, Vol.44 (4), p.273-283 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 283 |
---|---|
container_issue | 4 |
container_start_page | 273 |
container_title | The College mathematics journal |
container_volume | 44 |
creator | Taalman, L Tongen, A Warren, B Wyrick-Flax, F Yoon, I |
description | This paper introduces a new matrix tool for the sowing game Tchoukaillon, which establishes a relationship between board vectors and move vectors that does not depend on actually playing the game. This allows for simpler proofs than currently appear in the literature for two key theorems, as well as a new method for constructing move vectors.We also explore extensions to Mancala, a popular two-player sowing game. |
doi_str_mv | 10.4169/college.math.j.44.4.273 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1438178192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1017618</ericid><jstor_id>10.4169/college.math.j.44.4.273</jstor_id><sourcerecordid>10.4169/college.math.j.44.4.273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-d575a05beda104daba10c4da17f6012b00f88c1d326c103a2ad2da4fd340c48a3</originalsourceid><addsrcrecordid>eNqNj8tKAzEUhoMoWKvgC4iC6xlzktMks5TSeqHFja7DaZLRDtNOTaYL396UKa5d_Yv_xsfYLfASQVUPrmvb8BnKDfVfZVMillgKLU_YCCoJBUhUp2zENarCSBTn7CKlhnMORqsRu17S1lFLd0vq49qFdMnOampTuDrqmH3MZ-_T52Lx9vQyfVwUTijdF36iJ8Qnq-AJOHpaZXFZQdeKg1hxXhvjwEuhHHBJgrzwhLWXmHOG5JjdD7u72H3vQ-pt0-3jNl9aQGlAG6hETukh5WKXUgy13cX1huKPBW4P-PaIbw_4trGIFm3Gz82boRky1l9r9goctAKTfRz8JvVd_PfsLxCca54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1438178192</pqid></control><display><type>article</type><title>Mancala Matrices</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics & Statistics</source><creator>Taalman, L ; Tongen, A ; Warren, B ; Wyrick-Flax, F ; Yoon, I</creator><creatorcontrib>Taalman, L ; Tongen, A ; Warren, B ; Wyrick-Flax, F ; Yoon, I</creatorcontrib><description>This paper introduces a new matrix tool for the sowing game Tchoukaillon, which establishes a relationship between board vectors and move vectors that does not depend on actually playing the game. This allows for simpler proofs than currently appear in the literature for two key theorems, as well as a new method for constructing move vectors.We also explore extensions to Mancala, a popular two-player sowing game.</description><identifier>ISSN: 0746-8342</identifier><identifier>EISSN: 1931-1346</identifier><identifier>DOI: 10.4169/college.math.j.44.4.273</identifier><language>eng</language><publisher>Washington: Mathematical Association of America</publisher><subject>Applied mathematics ; College Mathematics ; Educational Games ; Game theory ; Mathematical Concepts ; Mathematical theorems ; Mathematical vectors ; Mathematics Instruction ; Matrices ; Matrix ; Proof theory ; Sowing ; Teaching Methods ; Validity ; Vector space</subject><ispartof>The College mathematics journal, 2013-09, Vol.44 (4), p.273-283</ispartof><rights>Copyright the Mathematical Association of America 2013</rights><rights>Copyright Mathematical Association Of America Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-d575a05beda104daba10c4da17f6012b00f88c1d326c103a2ad2da4fd340c48a3</citedby><cites>FETCH-LOGICAL-c267t-d575a05beda104daba10c4da17f6012b00f88c1d326c103a2ad2da4fd340c48a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,799,828,27903,27904</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1017618$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Taalman, L</creatorcontrib><creatorcontrib>Tongen, A</creatorcontrib><creatorcontrib>Warren, B</creatorcontrib><creatorcontrib>Wyrick-Flax, F</creatorcontrib><creatorcontrib>Yoon, I</creatorcontrib><title>Mancala Matrices</title><title>The College mathematics journal</title><description>This paper introduces a new matrix tool for the sowing game Tchoukaillon, which establishes a relationship between board vectors and move vectors that does not depend on actually playing the game. This allows for simpler proofs than currently appear in the literature for two key theorems, as well as a new method for constructing move vectors.We also explore extensions to Mancala, a popular two-player sowing game.</description><subject>Applied mathematics</subject><subject>College Mathematics</subject><subject>Educational Games</subject><subject>Game theory</subject><subject>Mathematical Concepts</subject><subject>Mathematical theorems</subject><subject>Mathematical vectors</subject><subject>Mathematics Instruction</subject><subject>Matrices</subject><subject>Matrix</subject><subject>Proof theory</subject><subject>Sowing</subject><subject>Teaching Methods</subject><subject>Validity</subject><subject>Vector space</subject><issn>0746-8342</issn><issn>1931-1346</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNj8tKAzEUhoMoWKvgC4iC6xlzktMks5TSeqHFja7DaZLRDtNOTaYL396UKa5d_Yv_xsfYLfASQVUPrmvb8BnKDfVfZVMillgKLU_YCCoJBUhUp2zENarCSBTn7CKlhnMORqsRu17S1lFLd0vq49qFdMnOampTuDrqmH3MZ-_T52Lx9vQyfVwUTijdF36iJ8Qnq-AJOHpaZXFZQdeKg1hxXhvjwEuhHHBJgrzwhLWXmHOG5JjdD7u72H3vQ-pt0-3jNl9aQGlAG6hETukh5WKXUgy13cX1huKPBW4P-PaIbw_4trGIFm3Gz82boRky1l9r9goctAKTfRz8JvVd_PfsLxCca54</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Taalman, L</creator><creator>Tongen, A</creator><creator>Warren, B</creator><creator>Wyrick-Flax, F</creator><creator>Yoon, I</creator><general>Mathematical Association of America</general><general>Taylor & Francis Ltd</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20130901</creationdate><title>Mancala Matrices</title><author>Taalman, L ; Tongen, A ; Warren, B ; Wyrick-Flax, F ; Yoon, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-d575a05beda104daba10c4da17f6012b00f88c1d326c103a2ad2da4fd340c48a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied mathematics</topic><topic>College Mathematics</topic><topic>Educational Games</topic><topic>Game theory</topic><topic>Mathematical Concepts</topic><topic>Mathematical theorems</topic><topic>Mathematical vectors</topic><topic>Mathematics Instruction</topic><topic>Matrices</topic><topic>Matrix</topic><topic>Proof theory</topic><topic>Sowing</topic><topic>Teaching Methods</topic><topic>Validity</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taalman, L</creatorcontrib><creatorcontrib>Tongen, A</creatorcontrib><creatorcontrib>Warren, B</creatorcontrib><creatorcontrib>Wyrick-Flax, F</creatorcontrib><creatorcontrib>Yoon, I</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The College mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taalman, L</au><au>Tongen, A</au><au>Warren, B</au><au>Wyrick-Flax, F</au><au>Yoon, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1017618</ericid><atitle>Mancala Matrices</atitle><jtitle>The College mathematics journal</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>44</volume><issue>4</issue><spage>273</spage><epage>283</epage><pages>273-283</pages><issn>0746-8342</issn><eissn>1931-1346</eissn><abstract>This paper introduces a new matrix tool for the sowing game Tchoukaillon, which establishes a relationship between board vectors and move vectors that does not depend on actually playing the game. This allows for simpler proofs than currently appear in the literature for two key theorems, as well as a new method for constructing move vectors.We also explore extensions to Mancala, a popular two-player sowing game.</abstract><cop>Washington</cop><pub>Mathematical Association of America</pub><doi>10.4169/college.math.j.44.4.273</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0746-8342 |
ispartof | The College mathematics journal, 2013-09, Vol.44 (4), p.273-283 |
issn | 0746-8342 1931-1346 |
language | eng |
recordid | cdi_proquest_journals_1438178192 |
source | Jstor Complete Legacy; JSTOR Mathematics & Statistics |
subjects | Applied mathematics College Mathematics Educational Games Game theory Mathematical Concepts Mathematical theorems Mathematical vectors Mathematics Instruction Matrices Matrix Proof theory Sowing Teaching Methods Validity Vector space |
title | Mancala Matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mancala%20Matrices&rft.jtitle=The%20College%20mathematics%20journal&rft.au=Taalman,%20L&rft.date=2013-09-01&rft.volume=44&rft.issue=4&rft.spage=273&rft.epage=283&rft.pages=273-283&rft.issn=0746-8342&rft.eissn=1931-1346&rft_id=info:doi/10.4169/college.math.j.44.4.273&rft_dat=%3Cjstor_proqu%3E10.4169/college.math.j.44.4.273%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1438178192&rft_id=info:pmid/&rft_ericid=EJ1017618&rft_jstor_id=10.4169/college.math.j.44.4.273&rfr_iscdi=true |