Mancala Matrices

This paper introduces a new matrix tool for the sowing game Tchoukaillon, which establishes a relationship between board vectors and move vectors that does not depend on actually playing the game. This allows for simpler proofs than currently appear in the literature for two key theorems, as well as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The College mathematics journal 2013-09, Vol.44 (4), p.273-283
Hauptverfasser: Taalman, L, Tongen, A, Warren, B, Wyrick-Flax, F, Yoon, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 283
container_issue 4
container_start_page 273
container_title The College mathematics journal
container_volume 44
creator Taalman, L
Tongen, A
Warren, B
Wyrick-Flax, F
Yoon, I
description This paper introduces a new matrix tool for the sowing game Tchoukaillon, which establishes a relationship between board vectors and move vectors that does not depend on actually playing the game. This allows for simpler proofs than currently appear in the literature for two key theorems, as well as a new method for constructing move vectors.We also explore extensions to Mancala, a popular two-player sowing game.
doi_str_mv 10.4169/college.math.j.44.4.273
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1438178192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1017618</ericid><jstor_id>10.4169/college.math.j.44.4.273</jstor_id><sourcerecordid>10.4169/college.math.j.44.4.273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-d575a05beda104daba10c4da17f6012b00f88c1d326c103a2ad2da4fd340c48a3</originalsourceid><addsrcrecordid>eNqNj8tKAzEUhoMoWKvgC4iC6xlzktMks5TSeqHFja7DaZLRDtNOTaYL396UKa5d_Yv_xsfYLfASQVUPrmvb8BnKDfVfZVMillgKLU_YCCoJBUhUp2zENarCSBTn7CKlhnMORqsRu17S1lFLd0vq49qFdMnOampTuDrqmH3MZ-_T52Lx9vQyfVwUTijdF36iJ8Qnq-AJOHpaZXFZQdeKg1hxXhvjwEuhHHBJgrzwhLWXmHOG5JjdD7u72H3vQ-pt0-3jNl9aQGlAG6hETukh5WKXUgy13cX1huKPBW4P-PaIbw_4trGIFm3Gz82boRky1l9r9goctAKTfRz8JvVd_PfsLxCca54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1438178192</pqid></control><display><type>article</type><title>Mancala Matrices</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Taalman, L ; Tongen, A ; Warren, B ; Wyrick-Flax, F ; Yoon, I</creator><creatorcontrib>Taalman, L ; Tongen, A ; Warren, B ; Wyrick-Flax, F ; Yoon, I</creatorcontrib><description>This paper introduces a new matrix tool for the sowing game Tchoukaillon, which establishes a relationship between board vectors and move vectors that does not depend on actually playing the game. This allows for simpler proofs than currently appear in the literature for two key theorems, as well as a new method for constructing move vectors.We also explore extensions to Mancala, a popular two-player sowing game.</description><identifier>ISSN: 0746-8342</identifier><identifier>EISSN: 1931-1346</identifier><identifier>DOI: 10.4169/college.math.j.44.4.273</identifier><language>eng</language><publisher>Washington: Mathematical Association of America</publisher><subject>Applied mathematics ; College Mathematics ; Educational Games ; Game theory ; Mathematical Concepts ; Mathematical theorems ; Mathematical vectors ; Mathematics Instruction ; Matrices ; Matrix ; Proof theory ; Sowing ; Teaching Methods ; Validity ; Vector space</subject><ispartof>The College mathematics journal, 2013-09, Vol.44 (4), p.273-283</ispartof><rights>Copyright the Mathematical Association of America 2013</rights><rights>Copyright Mathematical Association Of America Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-d575a05beda104daba10c4da17f6012b00f88c1d326c103a2ad2da4fd340c48a3</citedby><cites>FETCH-LOGICAL-c267t-d575a05beda104daba10c4da17f6012b00f88c1d326c103a2ad2da4fd340c48a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,799,828,27903,27904</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1017618$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Taalman, L</creatorcontrib><creatorcontrib>Tongen, A</creatorcontrib><creatorcontrib>Warren, B</creatorcontrib><creatorcontrib>Wyrick-Flax, F</creatorcontrib><creatorcontrib>Yoon, I</creatorcontrib><title>Mancala Matrices</title><title>The College mathematics journal</title><description>This paper introduces a new matrix tool for the sowing game Tchoukaillon, which establishes a relationship between board vectors and move vectors that does not depend on actually playing the game. This allows for simpler proofs than currently appear in the literature for two key theorems, as well as a new method for constructing move vectors.We also explore extensions to Mancala, a popular two-player sowing game.</description><subject>Applied mathematics</subject><subject>College Mathematics</subject><subject>Educational Games</subject><subject>Game theory</subject><subject>Mathematical Concepts</subject><subject>Mathematical theorems</subject><subject>Mathematical vectors</subject><subject>Mathematics Instruction</subject><subject>Matrices</subject><subject>Matrix</subject><subject>Proof theory</subject><subject>Sowing</subject><subject>Teaching Methods</subject><subject>Validity</subject><subject>Vector space</subject><issn>0746-8342</issn><issn>1931-1346</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNj8tKAzEUhoMoWKvgC4iC6xlzktMks5TSeqHFja7DaZLRDtNOTaYL396UKa5d_Yv_xsfYLfASQVUPrmvb8BnKDfVfZVMillgKLU_YCCoJBUhUp2zENarCSBTn7CKlhnMORqsRu17S1lFLd0vq49qFdMnOampTuDrqmH3MZ-_T52Lx9vQyfVwUTijdF36iJ8Qnq-AJOHpaZXFZQdeKg1hxXhvjwEuhHHBJgrzwhLWXmHOG5JjdD7u72H3vQ-pt0-3jNl9aQGlAG6hETukh5WKXUgy13cX1huKPBW4P-PaIbw_4trGIFm3Gz82boRky1l9r9goctAKTfRz8JvVd_PfsLxCca54</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Taalman, L</creator><creator>Tongen, A</creator><creator>Warren, B</creator><creator>Wyrick-Flax, F</creator><creator>Yoon, I</creator><general>Mathematical Association of America</general><general>Taylor &amp; Francis Ltd</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20130901</creationdate><title>Mancala Matrices</title><author>Taalman, L ; Tongen, A ; Warren, B ; Wyrick-Flax, F ; Yoon, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-d575a05beda104daba10c4da17f6012b00f88c1d326c103a2ad2da4fd340c48a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied mathematics</topic><topic>College Mathematics</topic><topic>Educational Games</topic><topic>Game theory</topic><topic>Mathematical Concepts</topic><topic>Mathematical theorems</topic><topic>Mathematical vectors</topic><topic>Mathematics Instruction</topic><topic>Matrices</topic><topic>Matrix</topic><topic>Proof theory</topic><topic>Sowing</topic><topic>Teaching Methods</topic><topic>Validity</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taalman, L</creatorcontrib><creatorcontrib>Tongen, A</creatorcontrib><creatorcontrib>Warren, B</creatorcontrib><creatorcontrib>Wyrick-Flax, F</creatorcontrib><creatorcontrib>Yoon, I</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The College mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taalman, L</au><au>Tongen, A</au><au>Warren, B</au><au>Wyrick-Flax, F</au><au>Yoon, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1017618</ericid><atitle>Mancala Matrices</atitle><jtitle>The College mathematics journal</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>44</volume><issue>4</issue><spage>273</spage><epage>283</epage><pages>273-283</pages><issn>0746-8342</issn><eissn>1931-1346</eissn><abstract>This paper introduces a new matrix tool for the sowing game Tchoukaillon, which establishes a relationship between board vectors and move vectors that does not depend on actually playing the game. This allows for simpler proofs than currently appear in the literature for two key theorems, as well as a new method for constructing move vectors.We also explore extensions to Mancala, a popular two-player sowing game.</abstract><cop>Washington</cop><pub>Mathematical Association of America</pub><doi>10.4169/college.math.j.44.4.273</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0746-8342
ispartof The College mathematics journal, 2013-09, Vol.44 (4), p.273-283
issn 0746-8342
1931-1346
language eng
recordid cdi_proquest_journals_1438178192
source Jstor Complete Legacy; JSTOR Mathematics & Statistics
subjects Applied mathematics
College Mathematics
Educational Games
Game theory
Mathematical Concepts
Mathematical theorems
Mathematical vectors
Mathematics Instruction
Matrices
Matrix
Proof theory
Sowing
Teaching Methods
Validity
Vector space
title Mancala Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mancala%20Matrices&rft.jtitle=The%20College%20mathematics%20journal&rft.au=Taalman,%20L&rft.date=2013-09-01&rft.volume=44&rft.issue=4&rft.spage=273&rft.epage=283&rft.pages=273-283&rft.issn=0746-8342&rft.eissn=1931-1346&rft_id=info:doi/10.4169/college.math.j.44.4.273&rft_dat=%3Cjstor_proqu%3E10.4169/college.math.j.44.4.273%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1438178192&rft_id=info:pmid/&rft_ericid=EJ1017618&rft_jstor_id=10.4169/college.math.j.44.4.273&rfr_iscdi=true