High Efficiency Photovoltaic Source Simulator with Fast Response Time for Solar Power Conditioning Systems Evaluation
Photovoltaic (PV) source simulators serve as a convenient tool for the dynamic evaluation of solar power conditioning systems and maximum power point tracking algorithms. High efficiency and fast transient response time are essential features of any PV source simulator. This paper proposes a new typ...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2014-03, Vol.29 (3), p.1285-1297 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1297 |
---|---|
container_issue | 3 |
container_start_page | 1285 |
container_title | IEEE transactions on power electronics |
container_volume | 29 |
creator | Koran, Ahmed LaBella, Thomas Jih-Sheng Lai |
description | Photovoltaic (PV) source simulators serve as a convenient tool for the dynamic evaluation of solar power conditioning systems and maximum power point tracking algorithms. High efficiency and fast transient response time are essential features of any PV source simulator. This paper proposes a new type of PV source simulator that incorporates the advantages of both analog and digital-based simulators. The proposed system includes a three-phase ac-dc dual boost rectifier cascaded with a three-phase dc-dc interleaved buck converter. The selected power stage topology is highly reliable and efficient. Moreover, the multiphase converter helps improve system transient response though producing low output ripple which makes it adequate for PV source simulators. The simulator circuitry emulates precisely the static and the dynamic characteristics of actual PV generators under different load and environmental conditions. Additionally, the system allows the creation of the partial shading and bypass diodes effect on PV characteristics. The paper investigates the dynamic performance of a commercial solar power inverter using the proposed PV source simulator in steady-state and transient conditions. Closed-loop output impedance of the proposed PV source simulator has been measured and verified at different operating regions. The impedance profile--magnitude and phase--matches the output impedance of actual PV generators. Mathematical modeling and experimental validation of the proposed system is thoroughly presented based on a 2.0 kW hardware prototype. The proposed simulator efficiency, including the active-front-end rectifier and the converter stages, peaks at 96.7%. |
doi_str_mv | 10.1109/TPEL.2013.2262297 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1437009641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6514895</ieee_id><sourcerecordid>3082549721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-14fd37233fe304d34cd6c89742f6811a7b23c607bda8c455b8baa9653ff5c8bd3</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOD_-APElID525iZpmzzKmB8wcLj5XNI0cZGumUk62X9vx8aeLtzzO-dyD0J3QMYARD4t59PZmBJgY0oLSmV5hkYgOWQESHmORkSIPBNSskt0FeMPIcBzAiPUv7nvFZ5a67Qznd7h-conv_VtUk7jhe-DNnjh1n2rkg_4z6UVflEx4U8TN76LBi_d2mA7aAvfqoDn_s8EPPFd45Lzneu-8WIXk1lHPN2qtlf77Q26sKqN5vY4r9HXy3Q5ectmH6_vk-dZphllKQNuG1ZSxqxhhDeM66bQQpac2kIAqLKmTBekrBslNM_zWtRKySJn1uZa1A27Rg-H3E3wv72JqfoZPuqGkxVwVhIiCw4DBQdKBx9jMLbaBLdWYVcBqfbtVvt2q3271bHdwfN4TFZRq9YG1WkXT0YqOGFUkoG7P3DOGHOSixy4kDn7B4D9hG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437009641</pqid></control><display><type>article</type><title>High Efficiency Photovoltaic Source Simulator with Fast Response Time for Solar Power Conditioning Systems Evaluation</title><source>IEEE Electronic Library (IEL)</source><creator>Koran, Ahmed ; LaBella, Thomas ; Jih-Sheng Lai</creator><creatorcontrib>Koran, Ahmed ; LaBella, Thomas ; Jih-Sheng Lai</creatorcontrib><description>Photovoltaic (PV) source simulators serve as a convenient tool for the dynamic evaluation of solar power conditioning systems and maximum power point tracking algorithms. High efficiency and fast transient response time are essential features of any PV source simulator. This paper proposes a new type of PV source simulator that incorporates the advantages of both analog and digital-based simulators. The proposed system includes a three-phase ac-dc dual boost rectifier cascaded with a three-phase dc-dc interleaved buck converter. The selected power stage topology is highly reliable and efficient. Moreover, the multiphase converter helps improve system transient response though producing low output ripple which makes it adequate for PV source simulators. The simulator circuitry emulates precisely the static and the dynamic characteristics of actual PV generators under different load and environmental conditions. Additionally, the system allows the creation of the partial shading and bypass diodes effect on PV characteristics. The paper investigates the dynamic performance of a commercial solar power inverter using the proposed PV source simulator in steady-state and transient conditions. Closed-loop output impedance of the proposed PV source simulator has been measured and verified at different operating regions. The impedance profile--magnitude and phase--matches the output impedance of actual PV generators. Mathematical modeling and experimental validation of the proposed system is thoroughly presented based on a 2.0 kW hardware prototype. The proposed simulator efficiency, including the active-front-end rectifier and the converter stages, peaks at 96.7%.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2013.2262297</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>ac-dc power conversion ; Applied sciences ; Closed loop systems ; Convertors ; dc-dc power conversion ; Electric currents ; Electric power plants ; Electrical engineering. Electrical power engineering ; Electrical machines ; Electrical power engineering ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Energy ; Exact sciences and technology ; Generators ; Mathematical model ; Maximum power point trackers ; maximum power point tracking (MPPT) ; Natural energy ; Non classical power plants ; photovoltaic (PV) cells ; Photovoltaic cells ; Photovoltaic power plants ; Power conditioning ; PV power systems ; Simulation ; Solar energy ; Solar thermal conversion ; Solar thermal power plants ; Switches ; Time factors ; Voltage control</subject><ispartof>IEEE transactions on power electronics, 2014-03, Vol.29 (3), p.1285-1297</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-14fd37233fe304d34cd6c89742f6811a7b23c607bda8c455b8baa9653ff5c8bd3</citedby><cites>FETCH-LOGICAL-c323t-14fd37233fe304d34cd6c89742f6811a7b23c607bda8c455b8baa9653ff5c8bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6514895$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6514895$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28403290$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Koran, Ahmed</creatorcontrib><creatorcontrib>LaBella, Thomas</creatorcontrib><creatorcontrib>Jih-Sheng Lai</creatorcontrib><title>High Efficiency Photovoltaic Source Simulator with Fast Response Time for Solar Power Conditioning Systems Evaluation</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Photovoltaic (PV) source simulators serve as a convenient tool for the dynamic evaluation of solar power conditioning systems and maximum power point tracking algorithms. High efficiency and fast transient response time are essential features of any PV source simulator. This paper proposes a new type of PV source simulator that incorporates the advantages of both analog and digital-based simulators. The proposed system includes a three-phase ac-dc dual boost rectifier cascaded with a three-phase dc-dc interleaved buck converter. The selected power stage topology is highly reliable and efficient. Moreover, the multiphase converter helps improve system transient response though producing low output ripple which makes it adequate for PV source simulators. The simulator circuitry emulates precisely the static and the dynamic characteristics of actual PV generators under different load and environmental conditions. Additionally, the system allows the creation of the partial shading and bypass diodes effect on PV characteristics. The paper investigates the dynamic performance of a commercial solar power inverter using the proposed PV source simulator in steady-state and transient conditions. Closed-loop output impedance of the proposed PV source simulator has been measured and verified at different operating regions. The impedance profile--magnitude and phase--matches the output impedance of actual PV generators. Mathematical modeling and experimental validation of the proposed system is thoroughly presented based on a 2.0 kW hardware prototype. The proposed simulator efficiency, including the active-front-end rectifier and the converter stages, peaks at 96.7%.</description><subject>ac-dc power conversion</subject><subject>Applied sciences</subject><subject>Closed loop systems</subject><subject>Convertors</subject><subject>dc-dc power conversion</subject><subject>Electric currents</subject><subject>Electric power plants</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Electrical power engineering</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Generators</subject><subject>Mathematical model</subject><subject>Maximum power point trackers</subject><subject>maximum power point tracking (MPPT)</subject><subject>Natural energy</subject><subject>Non classical power plants</subject><subject>photovoltaic (PV) cells</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic power plants</subject><subject>Power conditioning</subject><subject>PV power systems</subject><subject>Simulation</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Solar thermal power plants</subject><subject>Switches</subject><subject>Time factors</subject><subject>Voltage control</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOD_-APElID525iZpmzzKmB8wcLj5XNI0cZGumUk62X9vx8aeLtzzO-dyD0J3QMYARD4t59PZmBJgY0oLSmV5hkYgOWQESHmORkSIPBNSskt0FeMPIcBzAiPUv7nvFZ5a67Qznd7h-conv_VtUk7jhe-DNnjh1n2rkg_4z6UVflEx4U8TN76LBi_d2mA7aAvfqoDn_s8EPPFd45Lzneu-8WIXk1lHPN2qtlf77Q26sKqN5vY4r9HXy3Q5ectmH6_vk-dZphllKQNuG1ZSxqxhhDeM66bQQpac2kIAqLKmTBekrBslNM_zWtRKySJn1uZa1A27Rg-H3E3wv72JqfoZPuqGkxVwVhIiCw4DBQdKBx9jMLbaBLdWYVcBqfbtVvt2q3271bHdwfN4TFZRq9YG1WkXT0YqOGFUkoG7P3DOGHOSixy4kDn7B4D9hG0</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Koran, Ahmed</creator><creator>LaBella, Thomas</creator><creator>Jih-Sheng Lai</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>High Efficiency Photovoltaic Source Simulator with Fast Response Time for Solar Power Conditioning Systems Evaluation</title><author>Koran, Ahmed ; LaBella, Thomas ; Jih-Sheng Lai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-14fd37233fe304d34cd6c89742f6811a7b23c607bda8c455b8baa9653ff5c8bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ac-dc power conversion</topic><topic>Applied sciences</topic><topic>Closed loop systems</topic><topic>Convertors</topic><topic>dc-dc power conversion</topic><topic>Electric currents</topic><topic>Electric power plants</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Electrical power engineering</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Generators</topic><topic>Mathematical model</topic><topic>Maximum power point trackers</topic><topic>maximum power point tracking (MPPT)</topic><topic>Natural energy</topic><topic>Non classical power plants</topic><topic>photovoltaic (PV) cells</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic power plants</topic><topic>Power conditioning</topic><topic>PV power systems</topic><topic>Simulation</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Solar thermal power plants</topic><topic>Switches</topic><topic>Time factors</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koran, Ahmed</creatorcontrib><creatorcontrib>LaBella, Thomas</creatorcontrib><creatorcontrib>Jih-Sheng Lai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koran, Ahmed</au><au>LaBella, Thomas</au><au>Jih-Sheng Lai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Efficiency Photovoltaic Source Simulator with Fast Response Time for Solar Power Conditioning Systems Evaluation</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>29</volume><issue>3</issue><spage>1285</spage><epage>1297</epage><pages>1285-1297</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Photovoltaic (PV) source simulators serve as a convenient tool for the dynamic evaluation of solar power conditioning systems and maximum power point tracking algorithms. High efficiency and fast transient response time are essential features of any PV source simulator. This paper proposes a new type of PV source simulator that incorporates the advantages of both analog and digital-based simulators. The proposed system includes a three-phase ac-dc dual boost rectifier cascaded with a three-phase dc-dc interleaved buck converter. The selected power stage topology is highly reliable and efficient. Moreover, the multiphase converter helps improve system transient response though producing low output ripple which makes it adequate for PV source simulators. The simulator circuitry emulates precisely the static and the dynamic characteristics of actual PV generators under different load and environmental conditions. Additionally, the system allows the creation of the partial shading and bypass diodes effect on PV characteristics. The paper investigates the dynamic performance of a commercial solar power inverter using the proposed PV source simulator in steady-state and transient conditions. Closed-loop output impedance of the proposed PV source simulator has been measured and verified at different operating regions. The impedance profile--magnitude and phase--matches the output impedance of actual PV generators. Mathematical modeling and experimental validation of the proposed system is thoroughly presented based on a 2.0 kW hardware prototype. The proposed simulator efficiency, including the active-front-end rectifier and the converter stages, peaks at 96.7%.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPEL.2013.2262297</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2014-03, Vol.29 (3), p.1285-1297 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_proquest_journals_1437009641 |
source | IEEE Electronic Library (IEL) |
subjects | ac-dc power conversion Applied sciences Closed loop systems Convertors dc-dc power conversion Electric currents Electric power plants Electrical engineering. Electrical power engineering Electrical machines Electrical power engineering Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Energy Exact sciences and technology Generators Mathematical model Maximum power point trackers maximum power point tracking (MPPT) Natural energy Non classical power plants photovoltaic (PV) cells Photovoltaic cells Photovoltaic power plants Power conditioning PV power systems Simulation Solar energy Solar thermal conversion Solar thermal power plants Switches Time factors Voltage control |
title | High Efficiency Photovoltaic Source Simulator with Fast Response Time for Solar Power Conditioning Systems Evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Efficiency%20Photovoltaic%20Source%20Simulator%20with%20Fast%20Response%20Time%20for%20Solar%20Power%20Conditioning%20Systems%20Evaluation&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Koran,%20Ahmed&rft.date=2014-03-01&rft.volume=29&rft.issue=3&rft.spage=1285&rft.epage=1297&rft.pages=1285-1297&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2013.2262297&rft_dat=%3Cproquest_RIE%3E3082549721%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437009641&rft_id=info:pmid/&rft_ieee_id=6514895&rfr_iscdi=true |