High Efficiency Photovoltaic Source Simulator with Fast Response Time for Solar Power Conditioning Systems Evaluation

Photovoltaic (PV) source simulators serve as a convenient tool for the dynamic evaluation of solar power conditioning systems and maximum power point tracking algorithms. High efficiency and fast transient response time are essential features of any PV source simulator. This paper proposes a new typ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2014-03, Vol.29 (3), p.1285-1297
Hauptverfasser: Koran, Ahmed, LaBella, Thomas, Jih-Sheng Lai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1297
container_issue 3
container_start_page 1285
container_title IEEE transactions on power electronics
container_volume 29
creator Koran, Ahmed
LaBella, Thomas
Jih-Sheng Lai
description Photovoltaic (PV) source simulators serve as a convenient tool for the dynamic evaluation of solar power conditioning systems and maximum power point tracking algorithms. High efficiency and fast transient response time are essential features of any PV source simulator. This paper proposes a new type of PV source simulator that incorporates the advantages of both analog and digital-based simulators. The proposed system includes a three-phase ac-dc dual boost rectifier cascaded with a three-phase dc-dc interleaved buck converter. The selected power stage topology is highly reliable and efficient. Moreover, the multiphase converter helps improve system transient response though producing low output ripple which makes it adequate for PV source simulators. The simulator circuitry emulates precisely the static and the dynamic characteristics of actual PV generators under different load and environmental conditions. Additionally, the system allows the creation of the partial shading and bypass diodes effect on PV characteristics. The paper investigates the dynamic performance of a commercial solar power inverter using the proposed PV source simulator in steady-state and transient conditions. Closed-loop output impedance of the proposed PV source simulator has been measured and verified at different operating regions. The impedance profile--magnitude and phase--matches the output impedance of actual PV generators. Mathematical modeling and experimental validation of the proposed system is thoroughly presented based on a 2.0 kW hardware prototype. The proposed simulator efficiency, including the active-front-end rectifier and the converter stages, peaks at 96.7%.
doi_str_mv 10.1109/TPEL.2013.2262297
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1437009641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6514895</ieee_id><sourcerecordid>3082549721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-14fd37233fe304d34cd6c89742f6811a7b23c607bda8c455b8baa9653ff5c8bd3</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOD_-APElID525iZpmzzKmB8wcLj5XNI0cZGumUk62X9vx8aeLtzzO-dyD0J3QMYARD4t59PZmBJgY0oLSmV5hkYgOWQESHmORkSIPBNSskt0FeMPIcBzAiPUv7nvFZ5a67Qznd7h-conv_VtUk7jhe-DNnjh1n2rkg_4z6UVflEx4U8TN76LBi_d2mA7aAvfqoDn_s8EPPFd45Lzneu-8WIXk1lHPN2qtlf77Q26sKqN5vY4r9HXy3Q5ectmH6_vk-dZphllKQNuG1ZSxqxhhDeM66bQQpac2kIAqLKmTBekrBslNM_zWtRKySJn1uZa1A27Rg-H3E3wv72JqfoZPuqGkxVwVhIiCw4DBQdKBx9jMLbaBLdWYVcBqfbtVvt2q3271bHdwfN4TFZRq9YG1WkXT0YqOGFUkoG7P3DOGHOSixy4kDn7B4D9hG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437009641</pqid></control><display><type>article</type><title>High Efficiency Photovoltaic Source Simulator with Fast Response Time for Solar Power Conditioning Systems Evaluation</title><source>IEEE Electronic Library (IEL)</source><creator>Koran, Ahmed ; LaBella, Thomas ; Jih-Sheng Lai</creator><creatorcontrib>Koran, Ahmed ; LaBella, Thomas ; Jih-Sheng Lai</creatorcontrib><description>Photovoltaic (PV) source simulators serve as a convenient tool for the dynamic evaluation of solar power conditioning systems and maximum power point tracking algorithms. High efficiency and fast transient response time are essential features of any PV source simulator. This paper proposes a new type of PV source simulator that incorporates the advantages of both analog and digital-based simulators. The proposed system includes a three-phase ac-dc dual boost rectifier cascaded with a three-phase dc-dc interleaved buck converter. The selected power stage topology is highly reliable and efficient. Moreover, the multiphase converter helps improve system transient response though producing low output ripple which makes it adequate for PV source simulators. The simulator circuitry emulates precisely the static and the dynamic characteristics of actual PV generators under different load and environmental conditions. Additionally, the system allows the creation of the partial shading and bypass diodes effect on PV characteristics. The paper investigates the dynamic performance of a commercial solar power inverter using the proposed PV source simulator in steady-state and transient conditions. Closed-loop output impedance of the proposed PV source simulator has been measured and verified at different operating regions. The impedance profile--magnitude and phase--matches the output impedance of actual PV generators. Mathematical modeling and experimental validation of the proposed system is thoroughly presented based on a 2.0 kW hardware prototype. The proposed simulator efficiency, including the active-front-end rectifier and the converter stages, peaks at 96.7%.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2013.2262297</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>ac-dc power conversion ; Applied sciences ; Closed loop systems ; Convertors ; dc-dc power conversion ; Electric currents ; Electric power plants ; Electrical engineering. Electrical power engineering ; Electrical machines ; Electrical power engineering ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Energy ; Exact sciences and technology ; Generators ; Mathematical model ; Maximum power point trackers ; maximum power point tracking (MPPT) ; Natural energy ; Non classical power plants ; photovoltaic (PV) cells ; Photovoltaic cells ; Photovoltaic power plants ; Power conditioning ; PV power systems ; Simulation ; Solar energy ; Solar thermal conversion ; Solar thermal power plants ; Switches ; Time factors ; Voltage control</subject><ispartof>IEEE transactions on power electronics, 2014-03, Vol.29 (3), p.1285-1297</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-14fd37233fe304d34cd6c89742f6811a7b23c607bda8c455b8baa9653ff5c8bd3</citedby><cites>FETCH-LOGICAL-c323t-14fd37233fe304d34cd6c89742f6811a7b23c607bda8c455b8baa9653ff5c8bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6514895$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6514895$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28403290$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Koran, Ahmed</creatorcontrib><creatorcontrib>LaBella, Thomas</creatorcontrib><creatorcontrib>Jih-Sheng Lai</creatorcontrib><title>High Efficiency Photovoltaic Source Simulator with Fast Response Time for Solar Power Conditioning Systems Evaluation</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Photovoltaic (PV) source simulators serve as a convenient tool for the dynamic evaluation of solar power conditioning systems and maximum power point tracking algorithms. High efficiency and fast transient response time are essential features of any PV source simulator. This paper proposes a new type of PV source simulator that incorporates the advantages of both analog and digital-based simulators. The proposed system includes a three-phase ac-dc dual boost rectifier cascaded with a three-phase dc-dc interleaved buck converter. The selected power stage topology is highly reliable and efficient. Moreover, the multiphase converter helps improve system transient response though producing low output ripple which makes it adequate for PV source simulators. The simulator circuitry emulates precisely the static and the dynamic characteristics of actual PV generators under different load and environmental conditions. Additionally, the system allows the creation of the partial shading and bypass diodes effect on PV characteristics. The paper investigates the dynamic performance of a commercial solar power inverter using the proposed PV source simulator in steady-state and transient conditions. Closed-loop output impedance of the proposed PV source simulator has been measured and verified at different operating regions. The impedance profile--magnitude and phase--matches the output impedance of actual PV generators. Mathematical modeling and experimental validation of the proposed system is thoroughly presented based on a 2.0 kW hardware prototype. The proposed simulator efficiency, including the active-front-end rectifier and the converter stages, peaks at 96.7%.</description><subject>ac-dc power conversion</subject><subject>Applied sciences</subject><subject>Closed loop systems</subject><subject>Convertors</subject><subject>dc-dc power conversion</subject><subject>Electric currents</subject><subject>Electric power plants</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Electrical power engineering</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Generators</subject><subject>Mathematical model</subject><subject>Maximum power point trackers</subject><subject>maximum power point tracking (MPPT)</subject><subject>Natural energy</subject><subject>Non classical power plants</subject><subject>photovoltaic (PV) cells</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic power plants</subject><subject>Power conditioning</subject><subject>PV power systems</subject><subject>Simulation</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Solar thermal power plants</subject><subject>Switches</subject><subject>Time factors</subject><subject>Voltage control</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOD_-APElID525iZpmzzKmB8wcLj5XNI0cZGumUk62X9vx8aeLtzzO-dyD0J3QMYARD4t59PZmBJgY0oLSmV5hkYgOWQESHmORkSIPBNSskt0FeMPIcBzAiPUv7nvFZ5a67Qznd7h-conv_VtUk7jhe-DNnjh1n2rkg_4z6UVflEx4U8TN76LBi_d2mA7aAvfqoDn_s8EPPFd45Lzneu-8WIXk1lHPN2qtlf77Q26sKqN5vY4r9HXy3Q5ectmH6_vk-dZphllKQNuG1ZSxqxhhDeM66bQQpac2kIAqLKmTBekrBslNM_zWtRKySJn1uZa1A27Rg-H3E3wv72JqfoZPuqGkxVwVhIiCw4DBQdKBx9jMLbaBLdWYVcBqfbtVvt2q3271bHdwfN4TFZRq9YG1WkXT0YqOGFUkoG7P3DOGHOSixy4kDn7B4D9hG0</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Koran, Ahmed</creator><creator>LaBella, Thomas</creator><creator>Jih-Sheng Lai</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>High Efficiency Photovoltaic Source Simulator with Fast Response Time for Solar Power Conditioning Systems Evaluation</title><author>Koran, Ahmed ; LaBella, Thomas ; Jih-Sheng Lai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-14fd37233fe304d34cd6c89742f6811a7b23c607bda8c455b8baa9653ff5c8bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ac-dc power conversion</topic><topic>Applied sciences</topic><topic>Closed loop systems</topic><topic>Convertors</topic><topic>dc-dc power conversion</topic><topic>Electric currents</topic><topic>Electric power plants</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Electrical power engineering</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Generators</topic><topic>Mathematical model</topic><topic>Maximum power point trackers</topic><topic>maximum power point tracking (MPPT)</topic><topic>Natural energy</topic><topic>Non classical power plants</topic><topic>photovoltaic (PV) cells</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic power plants</topic><topic>Power conditioning</topic><topic>PV power systems</topic><topic>Simulation</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Solar thermal power plants</topic><topic>Switches</topic><topic>Time factors</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koran, Ahmed</creatorcontrib><creatorcontrib>LaBella, Thomas</creatorcontrib><creatorcontrib>Jih-Sheng Lai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koran, Ahmed</au><au>LaBella, Thomas</au><au>Jih-Sheng Lai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Efficiency Photovoltaic Source Simulator with Fast Response Time for Solar Power Conditioning Systems Evaluation</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>29</volume><issue>3</issue><spage>1285</spage><epage>1297</epage><pages>1285-1297</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Photovoltaic (PV) source simulators serve as a convenient tool for the dynamic evaluation of solar power conditioning systems and maximum power point tracking algorithms. High efficiency and fast transient response time are essential features of any PV source simulator. This paper proposes a new type of PV source simulator that incorporates the advantages of both analog and digital-based simulators. The proposed system includes a three-phase ac-dc dual boost rectifier cascaded with a three-phase dc-dc interleaved buck converter. The selected power stage topology is highly reliable and efficient. Moreover, the multiphase converter helps improve system transient response though producing low output ripple which makes it adequate for PV source simulators. The simulator circuitry emulates precisely the static and the dynamic characteristics of actual PV generators under different load and environmental conditions. Additionally, the system allows the creation of the partial shading and bypass diodes effect on PV characteristics. The paper investigates the dynamic performance of a commercial solar power inverter using the proposed PV source simulator in steady-state and transient conditions. Closed-loop output impedance of the proposed PV source simulator has been measured and verified at different operating regions. The impedance profile--magnitude and phase--matches the output impedance of actual PV generators. Mathematical modeling and experimental validation of the proposed system is thoroughly presented based on a 2.0 kW hardware prototype. The proposed simulator efficiency, including the active-front-end rectifier and the converter stages, peaks at 96.7%.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPEL.2013.2262297</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2014-03, Vol.29 (3), p.1285-1297
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_1437009641
source IEEE Electronic Library (IEL)
subjects ac-dc power conversion
Applied sciences
Closed loop systems
Convertors
dc-dc power conversion
Electric currents
Electric power plants
Electrical engineering. Electrical power engineering
Electrical machines
Electrical power engineering
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Energy
Exact sciences and technology
Generators
Mathematical model
Maximum power point trackers
maximum power point tracking (MPPT)
Natural energy
Non classical power plants
photovoltaic (PV) cells
Photovoltaic cells
Photovoltaic power plants
Power conditioning
PV power systems
Simulation
Solar energy
Solar thermal conversion
Solar thermal power plants
Switches
Time factors
Voltage control
title High Efficiency Photovoltaic Source Simulator with Fast Response Time for Solar Power Conditioning Systems Evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Efficiency%20Photovoltaic%20Source%20Simulator%20with%20Fast%20Response%20Time%20for%20Solar%20Power%20Conditioning%20Systems%20Evaluation&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Koran,%20Ahmed&rft.date=2014-03-01&rft.volume=29&rft.issue=3&rft.spage=1285&rft.epage=1297&rft.pages=1285-1297&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2013.2262297&rft_dat=%3Cproquest_RIE%3E3082549721%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437009641&rft_id=info:pmid/&rft_ieee_id=6514895&rfr_iscdi=true