RNA exerts self-control
A crystal structure of two bound RNA molecules not only provides insight into how regulatory riboswitch sequences affect messenger RNA expression, but also expands our understanding of RNA structure and architecture. See Letter p.363 Structure of a T-box tRNA binding region Bacterial T-box riboswitc...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2013-08, Vol.500 (7462), p.279-280 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 280 |
---|---|
container_issue | 7462 |
container_start_page | 279 |
container_title | Nature (London) |
container_volume | 500 |
creator | Chetnani, Bhaskar Mondragón, Alfonso |
description | A crystal structure of two bound RNA molecules not only provides insight into how regulatory riboswitch sequences affect messenger RNA expression, but also expands our understanding of RNA structure and architecture.
See Letter
p.363
Structure of a T-box tRNA binding region
Bacterial T-box riboswitches are found in the 5′ UTR of genes encoding aminoacyl-tRNA synthetases, the enzymes that charge tRNAs with amino acids. They differ from other riboswitches in that they bind tRNAs rather than a small molecule or metabolite to regulate expression. Jinwei Zhang and Adrian Ferré-D'Amaré have now solved the crystal structure of the T-box tRNA binding region, Stem I, bound to tRNA. The long-awaited structure shows that this region binds not just the anticodon, but cradles the entire tRNA, forming an extended interface. Binding is facilitated by mutual induced fit in the T-box RNA and tRNA. The T-loop motifs mediate interactions that are similar to those of RNase P and a domain of the large ribosomal subunit, even though the three species do not have a common evolutionary ancestor. |
doi_str_mv | 10.1038/nature12460 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1436954018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632496164</galeid><sourcerecordid>A632496164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4520-23769c8c4c1803a2df00ab0af1993ac896bd4a2ddb9b0467929aacedbeb921323</originalsourceid><addsrcrecordid>eNp10UtLw0AQAOBFFKzVkwevRU-iqbOPbnaPofgolAq14nHZbDYhJU3a3QTqvzelgi1E5jAwfDMDMwhdYxhioOKp1HXjLCaMwwnqYRbygHERnqIeABEBCMrP0YX3SwAY4ZD10M18Fg3s1rraD7wt0sBUZe2q4hKdpbrw9uo399Hny_Ni_BZM318n42gaGDYiEBAacmmEYQYLoJokKYCOQadYSqqNkDxOWFtOYhkD46EkUmtjk9jGkmBKaB_d7eeuXbVprK_Vsmpc2a5UmFEuRwyw-FOZLqzKy7SqnTar3BsVcUqY5JizVgUdKrOldbqoSpvmbfnI33Z4s8436hANO1AbiV3lpnPq_VHD7qB2W2e68V5NPubH9uF_Gy2-xrNObVzlvbOpWrt8pd23wqB2_1cH_2_14177VpWZdQeX7eA_O_armA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1436954018</pqid></control><display><type>article</type><title>RNA exerts self-control</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Chetnani, Bhaskar ; Mondragón, Alfonso</creator><creatorcontrib>Chetnani, Bhaskar ; Mondragón, Alfonso</creatorcontrib><description>A crystal structure of two bound RNA molecules not only provides insight into how regulatory riboswitch sequences affect messenger RNA expression, but also expands our understanding of RNA structure and architecture.
See Letter
p.363
Structure of a T-box tRNA binding region
Bacterial T-box riboswitches are found in the 5′ UTR of genes encoding aminoacyl-tRNA synthetases, the enzymes that charge tRNAs with amino acids. They differ from other riboswitches in that they bind tRNAs rather than a small molecule or metabolite to regulate expression. Jinwei Zhang and Adrian Ferré-D'Amaré have now solved the crystal structure of the T-box tRNA binding region, Stem I, bound to tRNA. The long-awaited structure shows that this region binds not just the anticodon, but cradles the entire tRNA, forming an extended interface. Binding is facilitated by mutual induced fit in the T-box RNA and tRNA. The T-loop motifs mediate interactions that are similar to those of RNase P and a domain of the large ribosomal subunit, even though the three species do not have a common evolutionary ancestor.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature12460</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337 ; 631/45 ; 631/535 ; 631/57 ; Amino acids ; Bacteria ; Control ; Crystal structure ; Gram-positive bacteria ; Humanities and Social Sciences ; multidisciplinary ; news-and-views ; Protein synthesis ; Proteins ; RNA ; RNA sequencing ; Science ; Science (multidisciplinary) ; Structure ; Transfer RNA</subject><ispartof>Nature (London), 2013-08, Vol.500 (7462), p.279-280</ispartof><rights>Springer Nature Limited 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 15, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4520-23769c8c4c1803a2df00ab0af1993ac896bd4a2ddb9b0467929aacedbeb921323</citedby><cites>FETCH-LOGICAL-c4520-23769c8c4c1803a2df00ab0af1993ac896bd4a2ddb9b0467929aacedbeb921323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature12460$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature12460$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chetnani, Bhaskar</creatorcontrib><creatorcontrib>Mondragón, Alfonso</creatorcontrib><title>RNA exerts self-control</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>A crystal structure of two bound RNA molecules not only provides insight into how regulatory riboswitch sequences affect messenger RNA expression, but also expands our understanding of RNA structure and architecture.
See Letter
p.363
Structure of a T-box tRNA binding region
Bacterial T-box riboswitches are found in the 5′ UTR of genes encoding aminoacyl-tRNA synthetases, the enzymes that charge tRNAs with amino acids. They differ from other riboswitches in that they bind tRNAs rather than a small molecule or metabolite to regulate expression. Jinwei Zhang and Adrian Ferré-D'Amaré have now solved the crystal structure of the T-box tRNA binding region, Stem I, bound to tRNA. The long-awaited structure shows that this region binds not just the anticodon, but cradles the entire tRNA, forming an extended interface. Binding is facilitated by mutual induced fit in the T-box RNA and tRNA. The T-loop motifs mediate interactions that are similar to those of RNase P and a domain of the large ribosomal subunit, even though the three species do not have a common evolutionary ancestor.</description><subject>631/337</subject><subject>631/45</subject><subject>631/535</subject><subject>631/57</subject><subject>Amino acids</subject><subject>Bacteria</subject><subject>Control</subject><subject>Crystal structure</subject><subject>Gram-positive bacteria</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>news-and-views</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Structure</subject><subject>Transfer RNA</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10UtLw0AQAOBFFKzVkwevRU-iqbOPbnaPofgolAq14nHZbDYhJU3a3QTqvzelgi1E5jAwfDMDMwhdYxhioOKp1HXjLCaMwwnqYRbygHERnqIeABEBCMrP0YX3SwAY4ZD10M18Fg3s1rraD7wt0sBUZe2q4hKdpbrw9uo399Hny_Ni_BZM318n42gaGDYiEBAacmmEYQYLoJokKYCOQadYSqqNkDxOWFtOYhkD46EkUmtjk9jGkmBKaB_d7eeuXbVprK_Vsmpc2a5UmFEuRwyw-FOZLqzKy7SqnTar3BsVcUqY5JizVgUdKrOldbqoSpvmbfnI33Z4s8436hANO1AbiV3lpnPq_VHD7qB2W2e68V5NPubH9uF_Gy2-xrNObVzlvbOpWrt8pd23wqB2_1cH_2_14177VpWZdQeX7eA_O_armA</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Chetnani, Bhaskar</creator><creator>Mondragón, Alfonso</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>20130801</creationdate><title>RNA exerts self-control</title><author>Chetnani, Bhaskar ; Mondragón, Alfonso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4520-23769c8c4c1803a2df00ab0af1993ac896bd4a2ddb9b0467929aacedbeb921323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/337</topic><topic>631/45</topic><topic>631/535</topic><topic>631/57</topic><topic>Amino acids</topic><topic>Bacteria</topic><topic>Control</topic><topic>Crystal structure</topic><topic>Gram-positive bacteria</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>news-and-views</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Structure</topic><topic>Transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chetnani, Bhaskar</creatorcontrib><creatorcontrib>Mondragón, Alfonso</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chetnani, Bhaskar</au><au>Mondragón, Alfonso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA exerts self-control</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>500</volume><issue>7462</issue><spage>279</spage><epage>280</epage><pages>279-280</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>A crystal structure of two bound RNA molecules not only provides insight into how regulatory riboswitch sequences affect messenger RNA expression, but also expands our understanding of RNA structure and architecture.
See Letter
p.363
Structure of a T-box tRNA binding region
Bacterial T-box riboswitches are found in the 5′ UTR of genes encoding aminoacyl-tRNA synthetases, the enzymes that charge tRNAs with amino acids. They differ from other riboswitches in that they bind tRNAs rather than a small molecule or metabolite to regulate expression. Jinwei Zhang and Adrian Ferré-D'Amaré have now solved the crystal structure of the T-box tRNA binding region, Stem I, bound to tRNA. The long-awaited structure shows that this region binds not just the anticodon, but cradles the entire tRNA, forming an extended interface. Binding is facilitated by mutual induced fit in the T-box RNA and tRNA. The T-loop motifs mediate interactions that are similar to those of RNase P and a domain of the large ribosomal subunit, even though the three species do not have a common evolutionary ancestor.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nature12460</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2013-08, Vol.500 (7462), p.279-280 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_journals_1436954018 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/337 631/45 631/535 631/57 Amino acids Bacteria Control Crystal structure Gram-positive bacteria Humanities and Social Sciences multidisciplinary news-and-views Protein synthesis Proteins RNA RNA sequencing Science Science (multidisciplinary) Structure Transfer RNA |
title | RNA exerts self-control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA%20exerts%20self-control&rft.jtitle=Nature%20(London)&rft.au=Chetnani,%20Bhaskar&rft.date=2013-08-01&rft.volume=500&rft.issue=7462&rft.spage=279&rft.epage=280&rft.pages=279-280&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature12460&rft_dat=%3Cgale_proqu%3EA632496164%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1436954018&rft_id=info:pmid/&rft_galeid=A632496164&rfr_iscdi=true |