The Periodic Pyramid

The chemical elements present in the modern periodic table are arranged in terms of atomic numbers and chemical periodicity. Periodicity arises from quantum mechanical limitations on how many electrons can occupy various shells and subshells of an atom. The shell model of the atom predicts that a ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical education 2013-08, Vol.90 (8), p.1003-1008
Hauptverfasser: Hennigan, Jennifer N, Grubbs, W. Tandy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1008
container_issue 8
container_start_page 1003
container_title Journal of chemical education
container_volume 90
creator Hennigan, Jennifer N
Grubbs, W. Tandy
description The chemical elements present in the modern periodic table are arranged in terms of atomic numbers and chemical periodicity. Periodicity arises from quantum mechanical limitations on how many electrons can occupy various shells and subshells of an atom. The shell model of the atom predicts that a maximum of 2, 8, 18, and 32 electrons can occupy the shells identified by the principle quantum numbers n = 1, 2, 3, and 4, respectively. The numbers 2, 8, 18, and 32 are shown in this work to be related to the triangular numbers from mathematical number theory. The relationship to the triangular numbers, in turn, suggests an alternate method for arranging elements in terms of periodicity. The resulting three-dimensional “periodic pyramid” is highly symmetric in shape. Just as is true in the modern periodic table, each layer of the periodic pyramid can be separated into shell and subshell contributions. Examining the pyramid’s structure is arguably a pedagogically useful activity for college-level introductory or physical chemistry students, as it provides an opportunity to further ponder the shell model of the atom and the origins of periodicity. The connections to number theory are used to show that the outermost subshell of a given shell contains (2n – 1) orbitals.
doi_str_mv 10.1021/ed3007567
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1436251934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1028694</ericid><sourcerecordid>3081524701</sourcerecordid><originalsourceid>FETCH-LOGICAL-a269t-e429ee636b10e7b1fb46173a9e4f69fd39cd1bff6a91e1d853a9672071d6f0ee3</originalsourceid><addsrcrecordid>eNplj01LAzEURYMoOFYXgluhIC66GM1LMvlYSqlWKdhFXYfM5AWnWKcm7aL_vikjRXB1F_dwL4eQa6APQBk8oueUqkqqE1KA4boEzvQpKWguS1NpcU4uUlpSCqwyuiA3i08czjG2nW-b4XwX3ar1l-QsuK-EV785IB_Pk8V4Ws7eX17HT7PSMWk2JQpmECWXNVBUNYRaSFDcGRRBmuC5aTzUIUhnAMHrKldSMarAy0AR-YDc9bvr2P1sMW3sstvG73xpQXDJqmwgMjXqqSZ2KUUMdh3blYs7C9QepO1ROrO3PZuNmiM3ecuYluawdd_3rkl_zv7t7AHpp1ui</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1436251934</pqid></control><display><type>article</type><title>The Periodic Pyramid</title><source>American Chemical Society Journals</source><creator>Hennigan, Jennifer N ; Grubbs, W. Tandy</creator><creatorcontrib>Hennigan, Jennifer N ; Grubbs, W. Tandy</creatorcontrib><description>The chemical elements present in the modern periodic table are arranged in terms of atomic numbers and chemical periodicity. Periodicity arises from quantum mechanical limitations on how many electrons can occupy various shells and subshells of an atom. The shell model of the atom predicts that a maximum of 2, 8, 18, and 32 electrons can occupy the shells identified by the principle quantum numbers n = 1, 2, 3, and 4, respectively. The numbers 2, 8, 18, and 32 are shown in this work to be related to the triangular numbers from mathematical number theory. The relationship to the triangular numbers, in turn, suggests an alternate method for arranging elements in terms of periodicity. The resulting three-dimensional “periodic pyramid” is highly symmetric in shape. Just as is true in the modern periodic table, each layer of the periodic pyramid can be separated into shell and subshell contributions. Examining the pyramid’s structure is arguably a pedagogically useful activity for college-level introductory or physical chemistry students, as it provides an opportunity to further ponder the shell model of the atom and the origins of periodicity. The connections to number theory are used to show that the outermost subshell of a given shell contains (2n – 1) orbitals.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/ed3007567</identifier><identifier>CODEN: JCEDA8</identifier><language>eng</language><publisher>Easton: American Chemical Society and Division of Chemical Education, Inc</publisher><subject>Atoms &amp; subatomic particles ; Chemical elements ; Chemistry ; College Science ; College students ; Electrons ; Mathematical Concepts ; Molecular Structure ; Number Concepts ; Number theory ; Numbers ; Organic chemistry ; Periodic table ; Periodic variations ; Physical chemistry ; Quantum Mechanics ; Quantum numbers ; Quantum physics ; Science education ; Science Instruction ; Scientific Concepts ; Surface structure</subject><ispartof>Journal of chemical education, 2013-08, Vol.90 (8), p.1003-1008</ispartof><rights>Copyright © 2013 American Chemical Society and Division of Chemical Education, Inc.</rights><rights>Copyright American Chemical Society Aug 13, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a269t-e429ee636b10e7b1fb46173a9e4f69fd39cd1bff6a91e1d853a9672071d6f0ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ed3007567$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ed3007567$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1028694$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Hennigan, Jennifer N</creatorcontrib><creatorcontrib>Grubbs, W. Tandy</creatorcontrib><title>The Periodic Pyramid</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>The chemical elements present in the modern periodic table are arranged in terms of atomic numbers and chemical periodicity. Periodicity arises from quantum mechanical limitations on how many electrons can occupy various shells and subshells of an atom. The shell model of the atom predicts that a maximum of 2, 8, 18, and 32 electrons can occupy the shells identified by the principle quantum numbers n = 1, 2, 3, and 4, respectively. The numbers 2, 8, 18, and 32 are shown in this work to be related to the triangular numbers from mathematical number theory. The relationship to the triangular numbers, in turn, suggests an alternate method for arranging elements in terms of periodicity. The resulting three-dimensional “periodic pyramid” is highly symmetric in shape. Just as is true in the modern periodic table, each layer of the periodic pyramid can be separated into shell and subshell contributions. Examining the pyramid’s structure is arguably a pedagogically useful activity for college-level introductory or physical chemistry students, as it provides an opportunity to further ponder the shell model of the atom and the origins of periodicity. The connections to number theory are used to show that the outermost subshell of a given shell contains (2n – 1) orbitals.</description><subject>Atoms &amp; subatomic particles</subject><subject>Chemical elements</subject><subject>Chemistry</subject><subject>College Science</subject><subject>College students</subject><subject>Electrons</subject><subject>Mathematical Concepts</subject><subject>Molecular Structure</subject><subject>Number Concepts</subject><subject>Number theory</subject><subject>Numbers</subject><subject>Organic chemistry</subject><subject>Periodic table</subject><subject>Periodic variations</subject><subject>Physical chemistry</subject><subject>Quantum Mechanics</subject><subject>Quantum numbers</subject><subject>Quantum physics</subject><subject>Science education</subject><subject>Science Instruction</subject><subject>Scientific Concepts</subject><subject>Surface structure</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNplj01LAzEURYMoOFYXgluhIC66GM1LMvlYSqlWKdhFXYfM5AWnWKcm7aL_vikjRXB1F_dwL4eQa6APQBk8oueUqkqqE1KA4boEzvQpKWguS1NpcU4uUlpSCqwyuiA3i08czjG2nW-b4XwX3ar1l-QsuK-EV785IB_Pk8V4Ws7eX17HT7PSMWk2JQpmECWXNVBUNYRaSFDcGRRBmuC5aTzUIUhnAMHrKldSMarAy0AR-YDc9bvr2P1sMW3sstvG73xpQXDJqmwgMjXqqSZ2KUUMdh3blYs7C9QepO1ROrO3PZuNmiM3ecuYluawdd_3rkl_zv7t7AHpp1ui</recordid><startdate>20130813</startdate><enddate>20130813</enddate><creator>Hennigan, Jennifer N</creator><creator>Grubbs, W. Tandy</creator><general>American Chemical Society and Division of Chemical Education, Inc</general><general>Division of Chemical Education, Inc and ACS Publications Division of the American Chemical Society</general><general>American Chemical Society</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20130813</creationdate><title>The Periodic Pyramid</title><author>Hennigan, Jennifer N ; Grubbs, W. Tandy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a269t-e429ee636b10e7b1fb46173a9e4f69fd39cd1bff6a91e1d853a9672071d6f0ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atoms &amp; subatomic particles</topic><topic>Chemical elements</topic><topic>Chemistry</topic><topic>College Science</topic><topic>College students</topic><topic>Electrons</topic><topic>Mathematical Concepts</topic><topic>Molecular Structure</topic><topic>Number Concepts</topic><topic>Number theory</topic><topic>Numbers</topic><topic>Organic chemistry</topic><topic>Periodic table</topic><topic>Periodic variations</topic><topic>Physical chemistry</topic><topic>Quantum Mechanics</topic><topic>Quantum numbers</topic><topic>Quantum physics</topic><topic>Science education</topic><topic>Science Instruction</topic><topic>Scientific Concepts</topic><topic>Surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hennigan, Jennifer N</creatorcontrib><creatorcontrib>Grubbs, W. Tandy</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hennigan, Jennifer N</au><au>Grubbs, W. Tandy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1028694</ericid><atitle>The Periodic Pyramid</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>2013-08-13</date><risdate>2013</risdate><volume>90</volume><issue>8</issue><spage>1003</spage><epage>1008</epage><pages>1003-1008</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><coden>JCEDA8</coden><abstract>The chemical elements present in the modern periodic table are arranged in terms of atomic numbers and chemical periodicity. Periodicity arises from quantum mechanical limitations on how many electrons can occupy various shells and subshells of an atom. The shell model of the atom predicts that a maximum of 2, 8, 18, and 32 electrons can occupy the shells identified by the principle quantum numbers n = 1, 2, 3, and 4, respectively. The numbers 2, 8, 18, and 32 are shown in this work to be related to the triangular numbers from mathematical number theory. The relationship to the triangular numbers, in turn, suggests an alternate method for arranging elements in terms of periodicity. The resulting three-dimensional “periodic pyramid” is highly symmetric in shape. Just as is true in the modern periodic table, each layer of the periodic pyramid can be separated into shell and subshell contributions. Examining the pyramid’s structure is arguably a pedagogically useful activity for college-level introductory or physical chemistry students, as it provides an opportunity to further ponder the shell model of the atom and the origins of periodicity. The connections to number theory are used to show that the outermost subshell of a given shell contains (2n – 1) orbitals.</abstract><cop>Easton</cop><pub>American Chemical Society and Division of Chemical Education, Inc</pub><doi>10.1021/ed3007567</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9584
ispartof Journal of chemical education, 2013-08, Vol.90 (8), p.1003-1008
issn 0021-9584
1938-1328
language eng
recordid cdi_proquest_journals_1436251934
source American Chemical Society Journals
subjects Atoms & subatomic particles
Chemical elements
Chemistry
College Science
College students
Electrons
Mathematical Concepts
Molecular Structure
Number Concepts
Number theory
Numbers
Organic chemistry
Periodic table
Periodic variations
Physical chemistry
Quantum Mechanics
Quantum numbers
Quantum physics
Science education
Science Instruction
Scientific Concepts
Surface structure
title The Periodic Pyramid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Periodic%20Pyramid&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Hennigan,%20Jennifer%20N&rft.date=2013-08-13&rft.volume=90&rft.issue=8&rft.spage=1003&rft.epage=1008&rft.pages=1003-1008&rft.issn=0021-9584&rft.eissn=1938-1328&rft.coden=JCEDA8&rft_id=info:doi/10.1021/ed3007567&rft_dat=%3Cproquest_cross%3E3081524701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1436251934&rft_id=info:pmid/&rft_ericid=EJ1028694&rfr_iscdi=true