Task Learning of an Arm Robot in Real Space by Using a Learning System in Virtual Space

Reinforced learning by which a robot acquires control rules through trial and error has gotten a lot of attention. However, it is quite difficult for robots to acquire control rules by reinforcement learning in real space because many learning trials are needed to achieve the control rules; the robo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu Information and Systems, 2008/07/01, Vol.128(7), pp.1222-1230
Hauptverfasser: Tsubone, Tadashi, Kurimoto, Kenichi, Sugiyama, Koichi, Wada, Yasuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1230
container_issue 7
container_start_page 1222
container_title Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu
container_volume 128
creator Tsubone, Tadashi
Kurimoto, Kenichi
Sugiyama, Koichi
Wada, Yasuhiro
description Reinforced learning by which a robot acquires control rules through trial and error has gotten a lot of attention. However, it is quite difficult for robots to acquire control rules by reinforcement learning in real space because many learning trials are needed to achieve the control rules; the robot itself may lose control, or there may be safety problems with the control objects. In this paper, we propose a method in which a robot in real space learns a virtual task; then the task is transferred from virtual to real space. The robot eventually acquires the task in a real environment. We show that a real robot can acquire a task in virtual space with an input device by an example of an inverted pendulum. Next, we verify availability that the acquired task in virtual space can be applied to a real world task. We emphasize the utilization of virtual space to effectively obtain the real world task.
doi_str_mv 10.1541/ieejeiss.128.1222
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1433894946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076385641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2952-63d9cbb2407e87a48e6d57f094feabf7382dfb39f3db0dbc228785ec2534a36f3</originalsourceid><addsrcrecordid>eNpVkMtOAjEUQBujiQT5AHdNXA_2yXSWhCiakJjw0GXTdm6xCDPYDgv-3pkgGBe93Zxzb3IQuqdkSKWgjwFgAyGlIWWqfYxdoR7lQmWKSnmNeoQrmQnG6C0apBQsIUwonlPaQx9Lk77wDEysQrXGtcemwuO4w_Pa1g0OFZ6D2eLF3jjA9ohXqcPMn7E4pgZ2HfgeYnM4s3foxpttgsHv30er56fl5CWbvU1fJ-NZ5lghWTbiZeGsZYLkoHIjFIxKmXtSCA_G-pwrVnrLC89LS0rrGFO5kuCY5MLwked99HDau4_19wFSozf1IVbtSU0F56oQhRi1FD1RLtYpRfB6H8POxKOmRHcJ9TmhbhPqLmHrTE_OJjVmDRfDxCa4Lfw38stk7EK4TxM1VPwHdH1-xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433894946</pqid></control><display><type>article</type><title>Task Learning of an Arm Robot in Real Space by Using a Learning System in Virtual Space</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tsubone, Tadashi ; Kurimoto, Kenichi ; Sugiyama, Koichi ; Wada, Yasuhiro</creator><creatorcontrib>Tsubone, Tadashi ; Kurimoto, Kenichi ; Sugiyama, Koichi ; Wada, Yasuhiro</creatorcontrib><description>Reinforced learning by which a robot acquires control rules through trial and error has gotten a lot of attention. However, it is quite difficult for robots to acquire control rules by reinforcement learning in real space because many learning trials are needed to achieve the control rules; the robot itself may lose control, or there may be safety problems with the control objects. In this paper, we propose a method in which a robot in real space learns a virtual task; then the task is transferred from virtual to real space. The robot eventually acquires the task in a real environment. We show that a real robot can acquire a task in virtual space with an input device by an example of an inverted pendulum. Next, we verify availability that the acquired task in virtual space can be applied to a real world task. We emphasize the utilization of virtual space to effectively obtain the real world task.</description><identifier>ISSN: 0385-4221</identifier><identifier>EISSN: 1348-8155</identifier><identifier>DOI: 10.1541/ieejeiss.128.1222</identifier><language>eng</language><publisher>Tokyo: The Institute of Electrical Engineers of Japan</publisher><subject>learning control ; pole-balancing task ; reinforcement learning ; robotics ; virtual environment</subject><ispartof>IEEJ Transactions on Electronics, Information and Systems, 2008/07/01, Vol.128(7), pp.1222-1230</ispartof><rights>2008 by the Institute of Electrical Engineers of Japan</rights><rights>Copyright Japan Science and Technology Agency 2008</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2952-63d9cbb2407e87a48e6d57f094feabf7382dfb39f3db0dbc228785ec2534a36f3</citedby><cites>FETCH-LOGICAL-c2952-63d9cbb2407e87a48e6d57f094feabf7382dfb39f3db0dbc228785ec2534a36f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tsubone, Tadashi</creatorcontrib><creatorcontrib>Kurimoto, Kenichi</creatorcontrib><creatorcontrib>Sugiyama, Koichi</creatorcontrib><creatorcontrib>Wada, Yasuhiro</creatorcontrib><title>Task Learning of an Arm Robot in Real Space by Using a Learning System in Virtual Space</title><title>Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu</title><addtitle>IEEJ Trans. EIS</addtitle><description>Reinforced learning by which a robot acquires control rules through trial and error has gotten a lot of attention. However, it is quite difficult for robots to acquire control rules by reinforcement learning in real space because many learning trials are needed to achieve the control rules; the robot itself may lose control, or there may be safety problems with the control objects. In this paper, we propose a method in which a robot in real space learns a virtual task; then the task is transferred from virtual to real space. The robot eventually acquires the task in a real environment. We show that a real robot can acquire a task in virtual space with an input device by an example of an inverted pendulum. Next, we verify availability that the acquired task in virtual space can be applied to a real world task. We emphasize the utilization of virtual space to effectively obtain the real world task.</description><subject>learning control</subject><subject>pole-balancing task</subject><subject>reinforcement learning</subject><subject>robotics</subject><subject>virtual environment</subject><issn>0385-4221</issn><issn>1348-8155</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpVkMtOAjEUQBujiQT5AHdNXA_2yXSWhCiakJjw0GXTdm6xCDPYDgv-3pkgGBe93Zxzb3IQuqdkSKWgjwFgAyGlIWWqfYxdoR7lQmWKSnmNeoQrmQnG6C0apBQsIUwonlPaQx9Lk77wDEysQrXGtcemwuO4w_Pa1g0OFZ6D2eLF3jjA9ohXqcPMn7E4pgZ2HfgeYnM4s3foxpttgsHv30er56fl5CWbvU1fJ-NZ5lghWTbiZeGsZYLkoHIjFIxKmXtSCA_G-pwrVnrLC89LS0rrGFO5kuCY5MLwked99HDau4_19wFSozf1IVbtSU0F56oQhRi1FD1RLtYpRfB6H8POxKOmRHcJ9TmhbhPqLmHrTE_OJjVmDRfDxCa4Lfw38stk7EK4TxM1VPwHdH1-xQ</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Tsubone, Tadashi</creator><creator>Kurimoto, Kenichi</creator><creator>Sugiyama, Koichi</creator><creator>Wada, Yasuhiro</creator><general>The Institute of Electrical Engineers of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080701</creationdate><title>Task Learning of an Arm Robot in Real Space by Using a Learning System in Virtual Space</title><author>Tsubone, Tadashi ; Kurimoto, Kenichi ; Sugiyama, Koichi ; Wada, Yasuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2952-63d9cbb2407e87a48e6d57f094feabf7382dfb39f3db0dbc228785ec2534a36f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>learning control</topic><topic>pole-balancing task</topic><topic>reinforcement learning</topic><topic>robotics</topic><topic>virtual environment</topic><toplevel>online_resources</toplevel><creatorcontrib>Tsubone, Tadashi</creatorcontrib><creatorcontrib>Kurimoto, Kenichi</creatorcontrib><creatorcontrib>Sugiyama, Koichi</creatorcontrib><creatorcontrib>Wada, Yasuhiro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsubone, Tadashi</au><au>Kurimoto, Kenichi</au><au>Sugiyama, Koichi</au><au>Wada, Yasuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Learning of an Arm Robot in Real Space by Using a Learning System in Virtual Space</atitle><jtitle>Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu</jtitle><addtitle>IEEJ Trans. EIS</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>128</volume><issue>7</issue><spage>1222</spage><epage>1230</epage><pages>1222-1230</pages><issn>0385-4221</issn><eissn>1348-8155</eissn><abstract>Reinforced learning by which a robot acquires control rules through trial and error has gotten a lot of attention. However, it is quite difficult for robots to acquire control rules by reinforcement learning in real space because many learning trials are needed to achieve the control rules; the robot itself may lose control, or there may be safety problems with the control objects. In this paper, we propose a method in which a robot in real space learns a virtual task; then the task is transferred from virtual to real space. The robot eventually acquires the task in a real environment. We show that a real robot can acquire a task in virtual space with an input device by an example of an inverted pendulum. Next, we verify availability that the acquired task in virtual space can be applied to a real world task. We emphasize the utilization of virtual space to effectively obtain the real world task.</abstract><cop>Tokyo</cop><pub>The Institute of Electrical Engineers of Japan</pub><doi>10.1541/ieejeiss.128.1222</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0385-4221
ispartof IEEJ Transactions on Electronics, Information and Systems, 2008/07/01, Vol.128(7), pp.1222-1230
issn 0385-4221
1348-8155
language eng
recordid cdi_proquest_journals_1433894946
source EZB-FREE-00999 freely available EZB journals
subjects learning control
pole-balancing task
reinforcement learning
robotics
virtual environment
title Task Learning of an Arm Robot in Real Space by Using a Learning System in Virtual Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Learning%20of%20an%20Arm%20Robot%20in%20Real%20Space%20by%20Using%20a%20Learning%20System%20in%20Virtual%20Space&rft.jtitle=Denki%20Gakkai%20ronbunshi.%20C,%20Erekutoronikusu,%20joho%20kogaku,%20shisutemu&rft.au=Tsubone,%20Tadashi&rft.date=2008-07-01&rft.volume=128&rft.issue=7&rft.spage=1222&rft.epage=1230&rft.pages=1222-1230&rft.issn=0385-4221&rft.eissn=1348-8155&rft_id=info:doi/10.1541/ieejeiss.128.1222&rft_dat=%3Cproquest_cross%3E3076385641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433894946&rft_id=info:pmid/&rfr_iscdi=true