Maximum Neural Network with Nonlinear Self-Feedback and Its Application to Maximum Independent Set Problem

In this paper, based on the maximum neural network, we propose a new parallel algorithm that can escape from local minima and has powerful ability of searching the globally optimal or near-optimum solution for the maximum independent set problem (MISP). Given a graph, the aim of the MISP is to find...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu Information and Systems, 2005, Vol.125(2), pp.314-320
Hauptverfasser: Wang, Jiahai, Tang, Zheng, Xu, Xinshun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 320
container_issue 2
container_start_page 314
container_title Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu
container_volume 125
creator Wang, Jiahai
Tang, Zheng
Xu, Xinshun
description In this paper, based on the maximum neural network, we propose a new parallel algorithm that can escape from local minima and has powerful ability of searching the globally optimal or near-optimum solution for the maximum independent set problem (MISP). Given a graph, the aim of the MISP is to find the largest set of vertices such that no two vertices in the set are connected by an edge. The MISP is a classic optimization problem in computer science and in graph theory with many real-world applications, and is also known to be NP-complete. By adding a nonlinear self-feedback to the maximum neural network, we proposed a parallel algorithm that introduces richer and more flexible nonlinear dynamics and can prevent the network from getting stuck at local minima. After the nonlinear dynamics has vanished, the proposed algorithm then is fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. A large number of instances have been simulated to verify the proposed algorithm.
doi_str_mv 10.1541/ieejeiss.125.314
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1433887393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076356671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3104-be38cde7409e53b2d65f86c84ba9527fb7d0eca725a73be906fca13bae412473</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMoWKt7lwHXU5NJ0plZlmK1UKtg9yGTuWMznZdJhuq_N9IHuLlnc75z4UPonpIJFZw-GoAKjHMTGosJo_wCjSjjaZRSIS7RiLBURDyO6TW6ca4ihDHB-QhVr-rbNEOD1zBYVYfw-87u8N74LV53bW1aUBZ_QF1GC4AiV3qHVVvgpXd41ve10cqbrsW-w6epZVtAD-G0PoAev9sur6G5RVelqh3cHXOMNounzfwlWr09L-ezVaQZJTzKgaW6gISTDATL42IqynSqU56rTMRJmScFAa2SWKiE5ZCRaakVZbkCTmOesDF6OMz2tvsawHlZdYNtw0dJOWNpmrCMhRY5tLTtnLNQyt6aRtkfSYn8EypPQmUQKoPQgCwOSOW8-oQzoKw3uob_QHy8ATwX9FZZCS37BUo1hZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433887393</pqid></control><display><type>article</type><title>Maximum Neural Network with Nonlinear Self-Feedback and Its Application to Maximum Independent Set Problem</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Jiahai ; Tang, Zheng ; Xu, Xinshun</creator><creatorcontrib>Wang, Jiahai ; Tang, Zheng ; Xu, Xinshun</creatorcontrib><description>In this paper, based on the maximum neural network, we propose a new parallel algorithm that can escape from local minima and has powerful ability of searching the globally optimal or near-optimum solution for the maximum independent set problem (MISP). Given a graph, the aim of the MISP is to find the largest set of vertices such that no two vertices in the set are connected by an edge. The MISP is a classic optimization problem in computer science and in graph theory with many real-world applications, and is also known to be NP-complete. By adding a nonlinear self-feedback to the maximum neural network, we proposed a parallel algorithm that introduces richer and more flexible nonlinear dynamics and can prevent the network from getting stuck at local minima. After the nonlinear dynamics has vanished, the proposed algorithm then is fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. A large number of instances have been simulated to verify the proposed algorithm.</description><identifier>ISSN: 0385-4221</identifier><identifier>EISSN: 1348-8155</identifier><identifier>DOI: 10.1541/ieejeiss.125.314</identifier><language>eng</language><publisher>Tokyo: The Institute of Electrical Engineers of Japan</publisher><subject>maximum independent set problem ; maximum neural network ; nonlinear self-feedback ; NP-complete problem</subject><ispartof>IEEJ Transactions on Electronics, Information and Systems, 2005, Vol.125(2), pp.314-320</ispartof><rights>2005 by the Institute of Electrical Engineers of Japan</rights><rights>Copyright Japan Science and Technology Agency 2005</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3104-be38cde7409e53b2d65f86c84ba9527fb7d0eca725a73be906fca13bae412473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Jiahai</creatorcontrib><creatorcontrib>Tang, Zheng</creatorcontrib><creatorcontrib>Xu, Xinshun</creatorcontrib><title>Maximum Neural Network with Nonlinear Self-Feedback and Its Application to Maximum Independent Set Problem</title><title>Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu</title><addtitle>IEEJ Trans. EIS</addtitle><description>In this paper, based on the maximum neural network, we propose a new parallel algorithm that can escape from local minima and has powerful ability of searching the globally optimal or near-optimum solution for the maximum independent set problem (MISP). Given a graph, the aim of the MISP is to find the largest set of vertices such that no two vertices in the set are connected by an edge. The MISP is a classic optimization problem in computer science and in graph theory with many real-world applications, and is also known to be NP-complete. By adding a nonlinear self-feedback to the maximum neural network, we proposed a parallel algorithm that introduces richer and more flexible nonlinear dynamics and can prevent the network from getting stuck at local minima. After the nonlinear dynamics has vanished, the proposed algorithm then is fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. A large number of instances have been simulated to verify the proposed algorithm.</description><subject>maximum independent set problem</subject><subject>maximum neural network</subject><subject>nonlinear self-feedback</subject><subject>NP-complete problem</subject><issn>0385-4221</issn><issn>1348-8155</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpVkEtLAzEUhYMoWKt7lwHXU5NJ0plZlmK1UKtg9yGTuWMznZdJhuq_N9IHuLlnc75z4UPonpIJFZw-GoAKjHMTGosJo_wCjSjjaZRSIS7RiLBURDyO6TW6ca4ihDHB-QhVr-rbNEOD1zBYVYfw-87u8N74LV53bW1aUBZ_QF1GC4AiV3qHVVvgpXd41ve10cqbrsW-w6epZVtAD-G0PoAev9sur6G5RVelqh3cHXOMNounzfwlWr09L-ezVaQZJTzKgaW6gISTDATL42IqynSqU56rTMRJmScFAa2SWKiE5ZCRaakVZbkCTmOesDF6OMz2tvsawHlZdYNtw0dJOWNpmrCMhRY5tLTtnLNQyt6aRtkfSYn8EypPQmUQKoPQgCwOSOW8-oQzoKw3uob_QHy8ATwX9FZZCS37BUo1hZA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Wang, Jiahai</creator><creator>Tang, Zheng</creator><creator>Xu, Xinshun</creator><general>The Institute of Electrical Engineers of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2005</creationdate><title>Maximum Neural Network with Nonlinear Self-Feedback and Its Application to Maximum Independent Set Problem</title><author>Wang, Jiahai ; Tang, Zheng ; Xu, Xinshun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3104-be38cde7409e53b2d65f86c84ba9527fb7d0eca725a73be906fca13bae412473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>maximum independent set problem</topic><topic>maximum neural network</topic><topic>nonlinear self-feedback</topic><topic>NP-complete problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiahai</creatorcontrib><creatorcontrib>Tang, Zheng</creatorcontrib><creatorcontrib>Xu, Xinshun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiahai</au><au>Tang, Zheng</au><au>Xu, Xinshun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Neural Network with Nonlinear Self-Feedback and Its Application to Maximum Independent Set Problem</atitle><jtitle>Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu</jtitle><addtitle>IEEJ Trans. EIS</addtitle><date>2005</date><risdate>2005</risdate><volume>125</volume><issue>2</issue><spage>314</spage><epage>320</epage><pages>314-320</pages><issn>0385-4221</issn><eissn>1348-8155</eissn><abstract>In this paper, based on the maximum neural network, we propose a new parallel algorithm that can escape from local minima and has powerful ability of searching the globally optimal or near-optimum solution for the maximum independent set problem (MISP). Given a graph, the aim of the MISP is to find the largest set of vertices such that no two vertices in the set are connected by an edge. The MISP is a classic optimization problem in computer science and in graph theory with many real-world applications, and is also known to be NP-complete. By adding a nonlinear self-feedback to the maximum neural network, we proposed a parallel algorithm that introduces richer and more flexible nonlinear dynamics and can prevent the network from getting stuck at local minima. After the nonlinear dynamics has vanished, the proposed algorithm then is fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. A large number of instances have been simulated to verify the proposed algorithm.</abstract><cop>Tokyo</cop><pub>The Institute of Electrical Engineers of Japan</pub><doi>10.1541/ieejeiss.125.314</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0385-4221
ispartof IEEJ Transactions on Electronics, Information and Systems, 2005, Vol.125(2), pp.314-320
issn 0385-4221
1348-8155
language eng
recordid cdi_proquest_journals_1433887393
source EZB-FREE-00999 freely available EZB journals
subjects maximum independent set problem
maximum neural network
nonlinear self-feedback
NP-complete problem
title Maximum Neural Network with Nonlinear Self-Feedback and Its Application to Maximum Independent Set Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Neural%20Network%20with%20Nonlinear%20Self-Feedback%20and%20Its%20Application%20to%20Maximum%20Independent%20Set%20Problem&rft.jtitle=Denki%20Gakkai%20ronbunshi.%20C,%20Erekutoronikusu,%20joho%20kogaku,%20shisutemu&rft.au=Wang,%20Jiahai&rft.date=2005&rft.volume=125&rft.issue=2&rft.spage=314&rft.epage=320&rft.pages=314-320&rft.issn=0385-4221&rft.eissn=1348-8155&rft_id=info:doi/10.1541/ieejeiss.125.314&rft_dat=%3Cproquest_cross%3E3076356671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433887393&rft_id=info:pmid/&rfr_iscdi=true