Classification of moroccan olive cultivars by linear discriminant analysis applied to ATR-FTIR spectra of endocarps
Summary The potential of FTIR combined with chemometrics was studied to classify five Moroccan varieties of olives by analysis on the endocarps. Attenuated total reflectance (ATR) enabled the samples to be examined directly in the solid state. The spectral data were subjected to a preliminary deriva...
Gespeichert in:
Veröffentlicht in: | International journal of food science & technology 2012-06, Vol.47 (6), p.1286-1292 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1292 |
---|---|
container_issue | 6 |
container_start_page | 1286 |
container_title | International journal of food science & technology |
container_volume | 47 |
creator | De Luca, Michele Terouzi, Wafa Kzaiber, Fouzia Ioele, Giuseppina Oussama, Abdelkhalek Ragno, Gaetano |
description | Summary
The potential of FTIR combined with chemometrics was studied to classify five Moroccan varieties of olives by analysis on the endocarps. Attenuated total reflectance (ATR) enabled the samples to be examined directly in the solid state. The spectral data were subjected to a preliminary derivative elaboration based on the Norris gap algorithm to reduce the noise and extract larger analytical information. Linear discriminant analysis (LDA) was adopted as classification method, and Principle component analysis (PCA) was employed to compress the original data set into a reduced new set of variables before LDA. The calibration set was built by using the IR data from seventy‐five samples scanned in reflectance mode, and the ranges 3000–2400 and 2300–600 cm−1 were selected because furnishing the most useful analytical information. PCA allowed clustering the samples in five classes by using the first two principal components with an explained variance of 98.16%. Application of LDA on an external test set of twenty‐five samples enabled to classify them into five variety groups with a correct classification of 92.0%. |
doi_str_mv | 10.1111/j.1365-2621.2012.02972.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1431973863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069996641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-b1a1f78b4dc09c836a5a93f527be2f77e7fc680eb061b15a5d2bcfaff1b694343</originalsourceid><addsrcrecordid>eNqNkF1v0zAUhq0JpJXBf7CEuEzwR2InN0hToVvRAKnrtEvrxLElFy8JPunW_nsSOvUa3_hI5z2PfR5CKGc5n87nXc6lKjOhBM8F4yJnotYiP1yQxbnxhixYXbKsLIS8JO8Qd4wxIXWxILiMgBh8sDCGvqO9p0996q2FqY7h2VG7j2N4hoS0OdIYOgeJtgFtCk-hg26k0EE8YkAKwxCDa-nY0-vtJltt1xuKg7Njgpnrura3kAZ8T956iOg-vN5X5GH1bbu8ze5-3ayX13eZLTgTWcOBe101RWtZbSupoIRa-lLoxgmvtdPeqoq5hine8BLKVjTWg_e8UXUhC3lFPp64Q-r_7B2OZtfv0_RbNLyQvNayUnJKVaeUTT1ict4M02qQjoYzMys2OzObNLNJMys2_xSbwzT66fUBQAvRJ-hswPO8KCulOeNT7ssp9xKiO_4336y_r-7ncgJkJ0DA0R3OAEi_jdJSl-bx543ZfL0t5I9amnv5F0xBn6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1431973863</pqid></control><display><type>article</type><title>Classification of moroccan olive cultivars by linear discriminant analysis applied to ATR-FTIR spectra of endocarps</title><source>Access via Wiley Online Library</source><source>Oxford Journals Open Access Collection</source><creator>De Luca, Michele ; Terouzi, Wafa ; Kzaiber, Fouzia ; Ioele, Giuseppina ; Oussama, Abdelkhalek ; Ragno, Gaetano</creator><creatorcontrib>De Luca, Michele ; Terouzi, Wafa ; Kzaiber, Fouzia ; Ioele, Giuseppina ; Oussama, Abdelkhalek ; Ragno, Gaetano</creatorcontrib><description>Summary
The potential of FTIR combined with chemometrics was studied to classify five Moroccan varieties of olives by analysis on the endocarps. Attenuated total reflectance (ATR) enabled the samples to be examined directly in the solid state. The spectral data were subjected to a preliminary derivative elaboration based on the Norris gap algorithm to reduce the noise and extract larger analytical information. Linear discriminant analysis (LDA) was adopted as classification method, and Principle component analysis (PCA) was employed to compress the original data set into a reduced new set of variables before LDA. The calibration set was built by using the IR data from seventy‐five samples scanned in reflectance mode, and the ranges 3000–2400 and 2300–600 cm−1 were selected because furnishing the most useful analytical information. PCA allowed clustering the samples in five classes by using the first two principal components with an explained variance of 98.16%. Application of LDA on an external test set of twenty‐five samples enabled to classify them into five variety groups with a correct classification of 92.0%.</description><identifier>ISSN: 0950-5423</identifier><identifier>EISSN: 1365-2621</identifier><identifier>DOI: 10.1111/j.1365-2621.2012.02972.x</identifier><identifier>CODEN: IJFTEZ</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Biological and medical sciences ; Chemometrics ; Classification ; Cultivars ; Discriminant analysis ; endocarp ; Food industries ; Food science ; fourier transform infrared spectroscopy ; Fundamental and applied biological sciences. Psychology ; linear discriminant analysis ; olives</subject><ispartof>International journal of food science & technology, 2012-06, Vol.47 (6), p.1286-1292</ispartof><rights>2012 The Authors. International Journal of Food Science and Technology © 2012 Institute of Food Science and Technology</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-b1a1f78b4dc09c836a5a93f527be2f77e7fc680eb061b15a5d2bcfaff1b694343</citedby><cites>FETCH-LOGICAL-c4102-b1a1f78b4dc09c836a5a93f527be2f77e7fc680eb061b15a5d2bcfaff1b694343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2621.2012.02972.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2621.2012.02972.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25867101$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>De Luca, Michele</creatorcontrib><creatorcontrib>Terouzi, Wafa</creatorcontrib><creatorcontrib>Kzaiber, Fouzia</creatorcontrib><creatorcontrib>Ioele, Giuseppina</creatorcontrib><creatorcontrib>Oussama, Abdelkhalek</creatorcontrib><creatorcontrib>Ragno, Gaetano</creatorcontrib><title>Classification of moroccan olive cultivars by linear discriminant analysis applied to ATR-FTIR spectra of endocarps</title><title>International journal of food science & technology</title><description>Summary
The potential of FTIR combined with chemometrics was studied to classify five Moroccan varieties of olives by analysis on the endocarps. Attenuated total reflectance (ATR) enabled the samples to be examined directly in the solid state. The spectral data were subjected to a preliminary derivative elaboration based on the Norris gap algorithm to reduce the noise and extract larger analytical information. Linear discriminant analysis (LDA) was adopted as classification method, and Principle component analysis (PCA) was employed to compress the original data set into a reduced new set of variables before LDA. The calibration set was built by using the IR data from seventy‐five samples scanned in reflectance mode, and the ranges 3000–2400 and 2300–600 cm−1 were selected because furnishing the most useful analytical information. PCA allowed clustering the samples in five classes by using the first two principal components with an explained variance of 98.16%. Application of LDA on an external test set of twenty‐five samples enabled to classify them into five variety groups with a correct classification of 92.0%.</description><subject>Biological and medical sciences</subject><subject>Chemometrics</subject><subject>Classification</subject><subject>Cultivars</subject><subject>Discriminant analysis</subject><subject>endocarp</subject><subject>Food industries</subject><subject>Food science</subject><subject>fourier transform infrared spectroscopy</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>linear discriminant analysis</subject><subject>olives</subject><issn>0950-5423</issn><issn>1365-2621</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkF1v0zAUhq0JpJXBf7CEuEzwR2InN0hToVvRAKnrtEvrxLElFy8JPunW_nsSOvUa3_hI5z2PfR5CKGc5n87nXc6lKjOhBM8F4yJnotYiP1yQxbnxhixYXbKsLIS8JO8Qd4wxIXWxILiMgBh8sDCGvqO9p0996q2FqY7h2VG7j2N4hoS0OdIYOgeJtgFtCk-hg26k0EE8YkAKwxCDa-nY0-vtJltt1xuKg7Njgpnrura3kAZ8T956iOg-vN5X5GH1bbu8ze5-3ayX13eZLTgTWcOBe101RWtZbSupoIRa-lLoxgmvtdPeqoq5hine8BLKVjTWg_e8UXUhC3lFPp64Q-r_7B2OZtfv0_RbNLyQvNayUnJKVaeUTT1ict4M02qQjoYzMys2OzObNLNJMys2_xSbwzT66fUBQAvRJ-hswPO8KCulOeNT7ssp9xKiO_4336y_r-7ncgJkJ0DA0R3OAEi_jdJSl-bx543ZfL0t5I9amnv5F0xBn6w</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>De Luca, Michele</creator><creator>Terouzi, Wafa</creator><creator>Kzaiber, Fouzia</creator><creator>Ioele, Giuseppina</creator><creator>Oussama, Abdelkhalek</creator><creator>Ragno, Gaetano</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>201206</creationdate><title>Classification of moroccan olive cultivars by linear discriminant analysis applied to ATR-FTIR spectra of endocarps</title><author>De Luca, Michele ; Terouzi, Wafa ; Kzaiber, Fouzia ; Ioele, Giuseppina ; Oussama, Abdelkhalek ; Ragno, Gaetano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-b1a1f78b4dc09c836a5a93f527be2f77e7fc680eb061b15a5d2bcfaff1b694343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and medical sciences</topic><topic>Chemometrics</topic><topic>Classification</topic><topic>Cultivars</topic><topic>Discriminant analysis</topic><topic>endocarp</topic><topic>Food industries</topic><topic>Food science</topic><topic>fourier transform infrared spectroscopy</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>linear discriminant analysis</topic><topic>olives</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Luca, Michele</creatorcontrib><creatorcontrib>Terouzi, Wafa</creatorcontrib><creatorcontrib>Kzaiber, Fouzia</creatorcontrib><creatorcontrib>Ioele, Giuseppina</creatorcontrib><creatorcontrib>Oussama, Abdelkhalek</creatorcontrib><creatorcontrib>Ragno, Gaetano</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>International journal of food science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Luca, Michele</au><au>Terouzi, Wafa</au><au>Kzaiber, Fouzia</au><au>Ioele, Giuseppina</au><au>Oussama, Abdelkhalek</au><au>Ragno, Gaetano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of moroccan olive cultivars by linear discriminant analysis applied to ATR-FTIR spectra of endocarps</atitle><jtitle>International journal of food science & technology</jtitle><date>2012-06</date><risdate>2012</risdate><volume>47</volume><issue>6</issue><spage>1286</spage><epage>1292</epage><pages>1286-1292</pages><issn>0950-5423</issn><eissn>1365-2621</eissn><coden>IJFTEZ</coden><abstract>Summary
The potential of FTIR combined with chemometrics was studied to classify five Moroccan varieties of olives by analysis on the endocarps. Attenuated total reflectance (ATR) enabled the samples to be examined directly in the solid state. The spectral data were subjected to a preliminary derivative elaboration based on the Norris gap algorithm to reduce the noise and extract larger analytical information. Linear discriminant analysis (LDA) was adopted as classification method, and Principle component analysis (PCA) was employed to compress the original data set into a reduced new set of variables before LDA. The calibration set was built by using the IR data from seventy‐five samples scanned in reflectance mode, and the ranges 3000–2400 and 2300–600 cm−1 were selected because furnishing the most useful analytical information. PCA allowed clustering the samples in five classes by using the first two principal components with an explained variance of 98.16%. Application of LDA on an external test set of twenty‐five samples enabled to classify them into five variety groups with a correct classification of 92.0%.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2621.2012.02972.x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-5423 |
ispartof | International journal of food science & technology, 2012-06, Vol.47 (6), p.1286-1292 |
issn | 0950-5423 1365-2621 |
language | eng |
recordid | cdi_proquest_journals_1431973863 |
source | Access via Wiley Online Library; Oxford Journals Open Access Collection |
subjects | Biological and medical sciences Chemometrics Classification Cultivars Discriminant analysis endocarp Food industries Food science fourier transform infrared spectroscopy Fundamental and applied biological sciences. Psychology linear discriminant analysis olives |
title | Classification of moroccan olive cultivars by linear discriminant analysis applied to ATR-FTIR spectra of endocarps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20moroccan%20olive%20cultivars%20by%20linear%20discriminant%20analysis%20applied%20to%20ATR-FTIR%20spectra%20of%20endocarps&rft.jtitle=International%20journal%20of%20food%20science%20&%20technology&rft.au=De%20Luca,%20Michele&rft.date=2012-06&rft.volume=47&rft.issue=6&rft.spage=1286&rft.epage=1292&rft.pages=1286-1292&rft.issn=0950-5423&rft.eissn=1365-2621&rft.coden=IJFTEZ&rft_id=info:doi/10.1111/j.1365-2621.2012.02972.x&rft_dat=%3Cproquest_cross%3E3069996641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1431973863&rft_id=info:pmid/&rfr_iscdi=true |