Generalized Elastic Model: Fractional Langevin Description, Fluctuation Relation and Linear Response

The Generalized Elastic Model is a linear stochastic model which accounts for the behaviour of many physical systems in nature, ranging from polymeric chains to single-file systems. If an external perturbation is exerted only on a single point x⋆ (tagged probe), it propagates throughout the entire s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical modelling of natural phenomena 2013-01, Vol.8 (2), p.127-143
Hauptverfasser: Taloni, A., Chechkin, A., Klafter, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 2
container_start_page 127
container_title Mathematical modelling of natural phenomena
container_volume 8
creator Taloni, A.
Chechkin, A.
Klafter, J.
description The Generalized Elastic Model is a linear stochastic model which accounts for the behaviour of many physical systems in nature, ranging from polymeric chains to single-file systems. If an external perturbation is exerted only on a single point x⋆ (tagged probe), it propagates throughout the entire system. Within the fractional Langevin equation framework, we study the effect of such a perturbation, in cases of a constant force applied. We report most of the results arising from our previous analysis and, in the present work, we show that the Fox H-functions formalism provides a compact, elegant and useful tool for the study of the scaling properties of any observable. In particular we show how the generalized Kubo fluctuation relations can be expressed in terms of H-functions.
doi_str_mv 10.1051/mmnp/20138209
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1431078805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067206341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-18e1a5481de4ed1bc42f29f5a1bb0c48419a2133a7456bc68afae9eb1d27b163</originalsourceid><addsrcrecordid>eNpFkM1Lw0AQxRdRsNQevQe8GruT3SQbb7b2Q6gKUlC8LJPNRFLTJO4mov71ptSPuczM48fw5jF2CvwCeAjj7bZqxgEHoQKeHLABxBH3I-BwyAY8iYUfCqmO2ci5De9LgBScD1i2oIoslsUXZd6sRNcWxrutMyovvblF0xZ1haW3wuqF3ovKuyZnbNHs5HNvXnam7XC3eA9U7gesMm9VVIS211xTV45O2FGOpaPRTx-y9Xy2ni791f3iZnq18o2QQeuDIsBQKshIUgapkUEeJHmIkKbcSCUhwQCEwFiGUWoihTlSQilkQZxCJIbsbH-2sfVbR67Vm7qzvX2n-2-Bx0rxsKf8PWVs7ZylXDe22KL91MD1Lkq9i1L_RvnPF66ljz8Y7auOYhGHWvFHvZxMpk_Pd3MN4hvS1Xbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1431078805</pqid></control><display><type>article</type><title>Generalized Elastic Model: Fractional Langevin Description, Fluctuation Relation and Linear Response</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge Journals</source><creator>Taloni, A. ; Chechkin, A. ; Klafter, J.</creator><contributor>Nepomnyashchy, A. ; Volpert, V.</contributor><creatorcontrib>Taloni, A. ; Chechkin, A. ; Klafter, J. ; Nepomnyashchy, A. ; Volpert, V.</creatorcontrib><description>The Generalized Elastic Model is a linear stochastic model which accounts for the behaviour of many physical systems in nature, ranging from polymeric chains to single-file systems. If an external perturbation is exerted only on a single point x⋆ (tagged probe), it propagates throughout the entire system. Within the fractional Langevin equation framework, we study the effect of such a perturbation, in cases of a constant force applied. We report most of the results arising from our previous analysis and, in the present work, we show that the Fox H-functions formalism provides a compact, elegant and useful tool for the study of the scaling properties of any observable. In particular we show how the generalized Kubo fluctuation relations can be expressed in terms of H-functions.</description><identifier>ISSN: 0973-5348</identifier><identifier>EISSN: 1760-6101</identifier><identifier>DOI: 10.1051/mmnp/20138209</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>33E20 ; 60G22 ; 82C31 ; 82C70 ; Fox H-function ; fractional Langevin equation ; Linear equations ; linear response ; Mathematical models ; Stochastic models ; subdiffusion</subject><ispartof>Mathematical modelling of natural phenomena, 2013-01, Vol.8 (2), p.127-143</ispartof><rights>EDP Sciences, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-18e1a5481de4ed1bc42f29f5a1bb0c48419a2133a7456bc68afae9eb1d27b163</citedby><cites>FETCH-LOGICAL-c342t-18e1a5481de4ed1bc42f29f5a1bb0c48419a2133a7456bc68afae9eb1d27b163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><contributor>Nepomnyashchy, A.</contributor><contributor>Volpert, V.</contributor><creatorcontrib>Taloni, A.</creatorcontrib><creatorcontrib>Chechkin, A.</creatorcontrib><creatorcontrib>Klafter, J.</creatorcontrib><title>Generalized Elastic Model: Fractional Langevin Description, Fluctuation Relation and Linear Response</title><title>Mathematical modelling of natural phenomena</title><description>The Generalized Elastic Model is a linear stochastic model which accounts for the behaviour of many physical systems in nature, ranging from polymeric chains to single-file systems. If an external perturbation is exerted only on a single point x⋆ (tagged probe), it propagates throughout the entire system. Within the fractional Langevin equation framework, we study the effect of such a perturbation, in cases of a constant force applied. We report most of the results arising from our previous analysis and, in the present work, we show that the Fox H-functions formalism provides a compact, elegant and useful tool for the study of the scaling properties of any observable. In particular we show how the generalized Kubo fluctuation relations can be expressed in terms of H-functions.</description><subject>33E20</subject><subject>60G22</subject><subject>82C31</subject><subject>82C70</subject><subject>Fox H-function</subject><subject>fractional Langevin equation</subject><subject>Linear equations</subject><subject>linear response</subject><subject>Mathematical models</subject><subject>Stochastic models</subject><subject>subdiffusion</subject><issn>0973-5348</issn><issn>1760-6101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkM1Lw0AQxRdRsNQevQe8GruT3SQbb7b2Q6gKUlC8LJPNRFLTJO4mov71ptSPuczM48fw5jF2CvwCeAjj7bZqxgEHoQKeHLABxBH3I-BwyAY8iYUfCqmO2ci5De9LgBScD1i2oIoslsUXZd6sRNcWxrutMyovvblF0xZ1haW3wuqF3ovKuyZnbNHs5HNvXnam7XC3eA9U7gesMm9VVIS211xTV45O2FGOpaPRTx-y9Xy2ni791f3iZnq18o2QQeuDIsBQKshIUgapkUEeJHmIkKbcSCUhwQCEwFiGUWoihTlSQilkQZxCJIbsbH-2sfVbR67Vm7qzvX2n-2-Bx0rxsKf8PWVs7ZylXDe22KL91MD1Lkq9i1L_RvnPF66ljz8Y7auOYhGHWvFHvZxMpk_Pd3MN4hvS1Xbc</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Taloni, A.</creator><creator>Chechkin, A.</creator><creator>Klafter, J.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20130101</creationdate><title>Generalized Elastic Model: Fractional Langevin Description, Fluctuation Relation and Linear Response</title><author>Taloni, A. ; Chechkin, A. ; Klafter, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-18e1a5481de4ed1bc42f29f5a1bb0c48419a2133a7456bc68afae9eb1d27b163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>33E20</topic><topic>60G22</topic><topic>82C31</topic><topic>82C70</topic><topic>Fox H-function</topic><topic>fractional Langevin equation</topic><topic>Linear equations</topic><topic>linear response</topic><topic>Mathematical models</topic><topic>Stochastic models</topic><topic>subdiffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taloni, A.</creatorcontrib><creatorcontrib>Chechkin, A.</creatorcontrib><creatorcontrib>Klafter, J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical modelling of natural phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taloni, A.</au><au>Chechkin, A.</au><au>Klafter, J.</au><au>Nepomnyashchy, A.</au><au>Volpert, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Elastic Model: Fractional Langevin Description, Fluctuation Relation and Linear Response</atitle><jtitle>Mathematical modelling of natural phenomena</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>8</volume><issue>2</issue><spage>127</spage><epage>143</epage><pages>127-143</pages><issn>0973-5348</issn><eissn>1760-6101</eissn><abstract>The Generalized Elastic Model is a linear stochastic model which accounts for the behaviour of many physical systems in nature, ranging from polymeric chains to single-file systems. If an external perturbation is exerted only on a single point x⋆ (tagged probe), it propagates throughout the entire system. Within the fractional Langevin equation framework, we study the effect of such a perturbation, in cases of a constant force applied. We report most of the results arising from our previous analysis and, in the present work, we show that the Fox H-functions formalism provides a compact, elegant and useful tool for the study of the scaling properties of any observable. In particular we show how the generalized Kubo fluctuation relations can be expressed in terms of H-functions.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/mmnp/20138209</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0973-5348
ispartof Mathematical modelling of natural phenomena, 2013-01, Vol.8 (2), p.127-143
issn 0973-5348
1760-6101
language eng
recordid cdi_proquest_journals_1431078805
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge Journals
subjects 33E20
60G22
82C31
82C70
Fox H-function
fractional Langevin equation
Linear equations
linear response
Mathematical models
Stochastic models
subdiffusion
title Generalized Elastic Model: Fractional Langevin Description, Fluctuation Relation and Linear Response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Elastic%20Model:%20Fractional%20Langevin%20Description,%20Fluctuation%20Relation%20and%20Linear%20Response&rft.jtitle=Mathematical%20modelling%20of%20natural%20phenomena&rft.au=Taloni,%20A.&rft.date=2013-01-01&rft.volume=8&rft.issue=2&rft.spage=127&rft.epage=143&rft.pages=127-143&rft.issn=0973-5348&rft.eissn=1760-6101&rft_id=info:doi/10.1051/mmnp/20138209&rft_dat=%3Cproquest_cross%3E3067206341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1431078805&rft_id=info:pmid/&rfr_iscdi=true