Square-root rule of two-dimensional bandwidth problem

The bandwidth minimization problem is of significance in network communication and related areas. Let G be a graph of n vertices. The two-dimensional bandwidth B2(G) of G is the minimum value of the maximum distance between adjacent vertices when G is embedded into an n × n grid in the plane. As a d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RAIRO. Informatique théorique et applications 2011-11, Vol.45 (4), p.399-411
Hauptverfasser: Lin, Lan, Lin, Yixun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 411
container_issue 4
container_start_page 399
container_title RAIRO. Informatique théorique et applications
container_volume 45
creator Lin, Lan
Lin, Yixun
description The bandwidth minimization problem is of significance in network communication and related areas. Let G be a graph of n vertices. The two-dimensional bandwidth B2(G) of G is the minimum value of the maximum distance between adjacent vertices when G is embedded into an n × n grid in the plane. As a discrete optimization problem, determining B2(G) is NP-hard in general. However, exact results for this parameter can be derived for some special classes of graphs. This paper studies the “square-root rule” of the two-dimensional bandwidth, which is useful in evaluating B2(G) for some typical graphs.
doi_str_mv 10.1051/ita/2011120
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1431038731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067105151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-14dd59ac9264717a53d731349db728a8ef7160faac59b81007bf22ad92ef1c5b3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWw4gciIVYo1GPHsbNEFeWh8pAA0Z01iW2Rktatnajw96RqxWoWc-6d0SHkHOg1UAGjusURowDA6AEZACtoypWYHZIBLZRKuRTZMTmJcU7ploIBEW_rDoNNg_dtErrGJt4l7canpl7YZaz9EpukxKXZ1Kb9SlbBl41dnJIjh020Z_s5JB-T2_fxfTp9uXsY30zTiud5m0JmjCiwKlieSZAouJEceFaYUjKFyjoJOXWIlShKBZTK0jGGpmDWQSVKPiQXu97-7rqzsdVz34X-pagh40C52vYNydWOqoKPMVinV6FeYPjVQPXWi-696L2Xnr7cd2KssHEBl1Ud_yNM8IzmKu-5dMfVsbU__3sM3zqXvUmt6KeejB9njL4-6Wf-B91ecIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1431038731</pqid></control><display><type>article</type><title>Square-root rule of two-dimensional bandwidth problem</title><source>NUMDAM</source><creator>Lin, Lan ; Lin, Yixun</creator><creatorcontrib>Lin, Lan ; Lin, Yixun</creatorcontrib><description>The bandwidth minimization problem is of significance in network communication and related areas. Let G be a graph of n vertices. The two-dimensional bandwidth B2(G) of G is the minimum value of the maximum distance between adjacent vertices when G is embedded into an n × n grid in the plane. As a discrete optimization problem, determining B2(G) is NP-hard in general. However, exact results for this parameter can be derived for some special classes of graphs. This paper studies the “square-root rule” of the two-dimensional bandwidth, which is useful in evaluating B2(G) for some typical graphs.</description><identifier>ISSN: 0988-3754</identifier><identifier>EISSN: 1290-385X</identifier><identifier>DOI: 10.1051/ita/2011120</identifier><identifier>CODEN: RITAE4</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>05C78 ; 68R10 ; Applied sciences ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Exact sciences and technology ; Graph theory ; Information retrieval. Graph ; lower and upper bounds ; Mathematics ; Miscellaneous ; Network layout ; optimal embedding ; Sciences and techniques of general use ; Theoretical computing ; two-dimensional bandwidth</subject><ispartof>RAIRO. Informatique théorique et applications, 2011-11, Vol.45 (4), p.399-411</ispartof><rights>2015 INIST-CNRS</rights><rights>EDP Sciences 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-14dd59ac9264717a53d731349db728a8ef7160faac59b81007bf22ad92ef1c5b3</citedby><cites>FETCH-LOGICAL-c366t-14dd59ac9264717a53d731349db728a8ef7160faac59b81007bf22ad92ef1c5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25340686$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Lan</creatorcontrib><creatorcontrib>Lin, Yixun</creatorcontrib><title>Square-root rule of two-dimensional bandwidth problem</title><title>RAIRO. Informatique théorique et applications</title><description>The bandwidth minimization problem is of significance in network communication and related areas. Let G be a graph of n vertices. The two-dimensional bandwidth B2(G) of G is the minimum value of the maximum distance between adjacent vertices when G is embedded into an n × n grid in the plane. As a discrete optimization problem, determining B2(G) is NP-hard in general. However, exact results for this parameter can be derived for some special classes of graphs. This paper studies the “square-root rule” of the two-dimensional bandwidth, which is useful in evaluating B2(G) for some typical graphs.</description><subject>05C78</subject><subject>68R10</subject><subject>Applied sciences</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Information retrieval. Graph</subject><subject>lower and upper bounds</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Network layout</subject><subject>optimal embedding</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><subject>two-dimensional bandwidth</subject><issn>0988-3754</issn><issn>1290-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqWw4gciIVYo1GPHsbNEFeWh8pAA0Z01iW2Rktatnajw96RqxWoWc-6d0SHkHOg1UAGjusURowDA6AEZACtoypWYHZIBLZRKuRTZMTmJcU7ploIBEW_rDoNNg_dtErrGJt4l7canpl7YZaz9EpukxKXZ1Kb9SlbBl41dnJIjh020Z_s5JB-T2_fxfTp9uXsY30zTiud5m0JmjCiwKlieSZAouJEceFaYUjKFyjoJOXWIlShKBZTK0jGGpmDWQSVKPiQXu97-7rqzsdVz34X-pagh40C52vYNydWOqoKPMVinV6FeYPjVQPXWi-696L2Xnr7cd2KssHEBl1Ud_yNM8IzmKu-5dMfVsbU__3sM3zqXvUmt6KeejB9njL4-6Wf-B91ecIA</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Lin, Lan</creator><creator>Lin, Yixun</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111101</creationdate><title>Square-root rule of two-dimensional bandwidth problem</title><author>Lin, Lan ; Lin, Yixun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-14dd59ac9264717a53d731349db728a8ef7160faac59b81007bf22ad92ef1c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>05C78</topic><topic>68R10</topic><topic>Applied sciences</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Information retrieval. Graph</topic><topic>lower and upper bounds</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Network layout</topic><topic>optimal embedding</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><topic>two-dimensional bandwidth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Lan</creatorcontrib><creatorcontrib>Lin, Yixun</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>RAIRO. Informatique théorique et applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Lan</au><au>Lin, Yixun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Square-root rule of two-dimensional bandwidth problem</atitle><jtitle>RAIRO. Informatique théorique et applications</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>45</volume><issue>4</issue><spage>399</spage><epage>411</epage><pages>399-411</pages><issn>0988-3754</issn><eissn>1290-385X</eissn><coden>RITAE4</coden><abstract>The bandwidth minimization problem is of significance in network communication and related areas. Let G be a graph of n vertices. The two-dimensional bandwidth B2(G) of G is the minimum value of the maximum distance between adjacent vertices when G is embedded into an n × n grid in the plane. As a discrete optimization problem, determining B2(G) is NP-hard in general. However, exact results for this parameter can be derived for some special classes of graphs. This paper studies the “square-root rule” of the two-dimensional bandwidth, which is useful in evaluating B2(G) for some typical graphs.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/ita/2011120</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0988-3754
ispartof RAIRO. Informatique théorique et applications, 2011-11, Vol.45 (4), p.399-411
issn 0988-3754
1290-385X
language eng
recordid cdi_proquest_journals_1431038731
source NUMDAM
subjects 05C78
68R10
Applied sciences
Combinatorics
Combinatorics. Ordered structures
Computer science
control theory
systems
Exact sciences and technology
Graph theory
Information retrieval. Graph
lower and upper bounds
Mathematics
Miscellaneous
Network layout
optimal embedding
Sciences and techniques of general use
Theoretical computing
two-dimensional bandwidth
title Square-root rule of two-dimensional bandwidth problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Square-root%20rule%20of%20two-dimensional%20bandwidth%20problem&rft.jtitle=RAIRO.%20Informatique%20the%CC%81orique%20et%20applications&rft.au=Lin,%20Lan&rft.date=2011-11-01&rft.volume=45&rft.issue=4&rft.spage=399&rft.epage=411&rft.pages=399-411&rft.issn=0988-3754&rft.eissn=1290-385X&rft.coden=RITAE4&rft_id=info:doi/10.1051/ita/2011120&rft_dat=%3Cproquest_cross%3E3067105151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1431038731&rft_id=info:pmid/&rfr_iscdi=true