Square-root rule of two-dimensional bandwidth problem
The bandwidth minimization problem is of significance in network communication and related areas. Let G be a graph of n vertices. The two-dimensional bandwidth B2(G) of G is the minimum value of the maximum distance between adjacent vertices when G is embedded into an n × n grid in the plane. As a d...
Gespeichert in:
Veröffentlicht in: | RAIRO. Informatique théorique et applications 2011-11, Vol.45 (4), p.399-411 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 411 |
---|---|
container_issue | 4 |
container_start_page | 399 |
container_title | RAIRO. Informatique théorique et applications |
container_volume | 45 |
creator | Lin, Lan Lin, Yixun |
description | The bandwidth minimization problem is of significance in network communication and related areas. Let G be a graph of n vertices. The two-dimensional bandwidth B2(G) of G is the minimum value of the maximum distance between adjacent vertices when G is embedded into an n × n grid in the plane. As a discrete optimization problem, determining B2(G) is NP-hard in general. However, exact results for this parameter can be derived for some special classes of graphs. This paper studies the “square-root rule” of the two-dimensional bandwidth, which is useful in evaluating B2(G) for some typical graphs. |
doi_str_mv | 10.1051/ita/2011120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1431038731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067105151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-14dd59ac9264717a53d731349db728a8ef7160faac59b81007bf22ad92ef1c5b3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWw4gciIVYo1GPHsbNEFeWh8pAA0Z01iW2Rktatnajw96RqxWoWc-6d0SHkHOg1UAGjusURowDA6AEZACtoypWYHZIBLZRKuRTZMTmJcU7ploIBEW_rDoNNg_dtErrGJt4l7canpl7YZaz9EpukxKXZ1Kb9SlbBl41dnJIjh020Z_s5JB-T2_fxfTp9uXsY30zTiud5m0JmjCiwKlieSZAouJEceFaYUjKFyjoJOXWIlShKBZTK0jGGpmDWQSVKPiQXu97-7rqzsdVz34X-pagh40C52vYNydWOqoKPMVinV6FeYPjVQPXWi-696L2Xnr7cd2KssHEBl1Ud_yNM8IzmKu-5dMfVsbU__3sM3zqXvUmt6KeejB9njL4-6Wf-B91ecIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1431038731</pqid></control><display><type>article</type><title>Square-root rule of two-dimensional bandwidth problem</title><source>NUMDAM</source><creator>Lin, Lan ; Lin, Yixun</creator><creatorcontrib>Lin, Lan ; Lin, Yixun</creatorcontrib><description>The bandwidth minimization problem is of significance in network communication and related areas. Let G be a graph of n vertices. The two-dimensional bandwidth B2(G) of G is the minimum value of the maximum distance between adjacent vertices when G is embedded into an n × n grid in the plane. As a discrete optimization problem, determining B2(G) is NP-hard in general. However, exact results for this parameter can be derived for some special classes of graphs. This paper studies the “square-root rule” of the two-dimensional bandwidth, which is useful in evaluating B2(G) for some typical graphs.</description><identifier>ISSN: 0988-3754</identifier><identifier>EISSN: 1290-385X</identifier><identifier>DOI: 10.1051/ita/2011120</identifier><identifier>CODEN: RITAE4</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>05C78 ; 68R10 ; Applied sciences ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Exact sciences and technology ; Graph theory ; Information retrieval. Graph ; lower and upper bounds ; Mathematics ; Miscellaneous ; Network layout ; optimal embedding ; Sciences and techniques of general use ; Theoretical computing ; two-dimensional bandwidth</subject><ispartof>RAIRO. Informatique théorique et applications, 2011-11, Vol.45 (4), p.399-411</ispartof><rights>2015 INIST-CNRS</rights><rights>EDP Sciences 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-14dd59ac9264717a53d731349db728a8ef7160faac59b81007bf22ad92ef1c5b3</citedby><cites>FETCH-LOGICAL-c366t-14dd59ac9264717a53d731349db728a8ef7160faac59b81007bf22ad92ef1c5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25340686$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Lan</creatorcontrib><creatorcontrib>Lin, Yixun</creatorcontrib><title>Square-root rule of two-dimensional bandwidth problem</title><title>RAIRO. Informatique théorique et applications</title><description>The bandwidth minimization problem is of significance in network communication and related areas. Let G be a graph of n vertices. The two-dimensional bandwidth B2(G) of G is the minimum value of the maximum distance between adjacent vertices when G is embedded into an n × n grid in the plane. As a discrete optimization problem, determining B2(G) is NP-hard in general. However, exact results for this parameter can be derived for some special classes of graphs. This paper studies the “square-root rule” of the two-dimensional bandwidth, which is useful in evaluating B2(G) for some typical graphs.</description><subject>05C78</subject><subject>68R10</subject><subject>Applied sciences</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Information retrieval. Graph</subject><subject>lower and upper bounds</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Network layout</subject><subject>optimal embedding</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><subject>two-dimensional bandwidth</subject><issn>0988-3754</issn><issn>1290-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqWw4gciIVYo1GPHsbNEFeWh8pAA0Z01iW2Rktatnajw96RqxWoWc-6d0SHkHOg1UAGjusURowDA6AEZACtoypWYHZIBLZRKuRTZMTmJcU7ploIBEW_rDoNNg_dtErrGJt4l7canpl7YZaz9EpukxKXZ1Kb9SlbBl41dnJIjh020Z_s5JB-T2_fxfTp9uXsY30zTiud5m0JmjCiwKlieSZAouJEceFaYUjKFyjoJOXWIlShKBZTK0jGGpmDWQSVKPiQXu97-7rqzsdVz34X-pagh40C52vYNydWOqoKPMVinV6FeYPjVQPXWi-696L2Xnr7cd2KssHEBl1Ud_yNM8IzmKu-5dMfVsbU__3sM3zqXvUmt6KeejB9njL4-6Wf-B91ecIA</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Lin, Lan</creator><creator>Lin, Yixun</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111101</creationdate><title>Square-root rule of two-dimensional bandwidth problem</title><author>Lin, Lan ; Lin, Yixun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-14dd59ac9264717a53d731349db728a8ef7160faac59b81007bf22ad92ef1c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>05C78</topic><topic>68R10</topic><topic>Applied sciences</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Information retrieval. Graph</topic><topic>lower and upper bounds</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Network layout</topic><topic>optimal embedding</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><topic>two-dimensional bandwidth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Lan</creatorcontrib><creatorcontrib>Lin, Yixun</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>RAIRO. Informatique théorique et applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Lan</au><au>Lin, Yixun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Square-root rule of two-dimensional bandwidth problem</atitle><jtitle>RAIRO. Informatique théorique et applications</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>45</volume><issue>4</issue><spage>399</spage><epage>411</epage><pages>399-411</pages><issn>0988-3754</issn><eissn>1290-385X</eissn><coden>RITAE4</coden><abstract>The bandwidth minimization problem is of significance in network communication and related areas. Let G be a graph of n vertices. The two-dimensional bandwidth B2(G) of G is the minimum value of the maximum distance between adjacent vertices when G is embedded into an n × n grid in the plane. As a discrete optimization problem, determining B2(G) is NP-hard in general. However, exact results for this parameter can be derived for some special classes of graphs. This paper studies the “square-root rule” of the two-dimensional bandwidth, which is useful in evaluating B2(G) for some typical graphs.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/ita/2011120</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0988-3754 |
ispartof | RAIRO. Informatique théorique et applications, 2011-11, Vol.45 (4), p.399-411 |
issn | 0988-3754 1290-385X |
language | eng |
recordid | cdi_proquest_journals_1431038731 |
source | NUMDAM |
subjects | 05C78 68R10 Applied sciences Combinatorics Combinatorics. Ordered structures Computer science control theory systems Exact sciences and technology Graph theory Information retrieval. Graph lower and upper bounds Mathematics Miscellaneous Network layout optimal embedding Sciences and techniques of general use Theoretical computing two-dimensional bandwidth |
title | Square-root rule of two-dimensional bandwidth problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Square-root%20rule%20of%20two-dimensional%20bandwidth%20problem&rft.jtitle=RAIRO.%20Informatique%20the%CC%81orique%20et%20applications&rft.au=Lin,%20Lan&rft.date=2011-11-01&rft.volume=45&rft.issue=4&rft.spage=399&rft.epage=411&rft.pages=399-411&rft.issn=0988-3754&rft.eissn=1290-385X&rft.coden=RITAE4&rft_id=info:doi/10.1051/ita/2011120&rft_dat=%3Cproquest_cross%3E3067105151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1431038731&rft_id=info:pmid/&rfr_iscdi=true |