Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system
A simple and robust method for targeted mutagenesis in zebrafish has long been sought. Previous methods generate monoallelic mutations in the germ line of F0 animals, usually delaying homozygosity for the mutation to the F2 generation. Generation of robust biallelic mutations in the F0 would allow f...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-08, Vol.110 (34), p.13904-13909 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13909 |
---|---|
container_issue | 34 |
container_start_page | 13904 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Jao, Li-En Wente, Susan R. Chen, Wenbiao |
description | A simple and robust method for targeted mutagenesis in zebrafish has long been sought. Previous methods generate monoallelic mutations in the germ line of F0 animals, usually delaying homozygosity for the mutation to the F2 generation. Generation of robust biallelic mutations in the F0 would allow for phenotypic analysis directly in injected animals. Recently the type II prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been adapted to serve as a targeted genome mutagenesis tool. Here we report an improved CRISPR/Cas system in zebrafish with custom guide RNAs and a zebrafish codon-optimized Cas9 protein that efficiently targeted a reporter transgene Tg(-5.1mnx1:egfp) and four endogenous loci (tyr , golden , mitfa , and ddx19). Mutagenesis rates reached 75–99%, indicating that most cells contained biallelic mutations. Recessive null-like phenotypes were observed in four of the five targeting cases, supporting high rates of biallelic gene disruption. We also observed efficient germ-line transmission of the Cas9-induced mutations. Finally, five genomic loci can be targeted simultaneously, resulting in multiple loss-of-function phenotypes in the same injected fish. This CRISPR/Cas9 system represents a highly effective and scalable gene knockout method in zebrafish and has the potential for applications in other model organisms. |
doi_str_mv | 10.1073/pnas.1308335110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1428319354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42713023</jstor_id><sourcerecordid>42713023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-3da33dcc591671c4e47cc684db1cfee7c3b4df537e06aca53814e10478b692d53</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS0EotuFMyfAUs9px1-xc0GqVgUqVQK17NlynMnWq2yy2Ami_PU42mWBi32Y37w3M4-QNwwuGWhxte9dumQCjBCKMXhGFgwqVpSygudkAcB1YSSXZ-Q8pS0AVMrAS3LGRcWMMHpB1jdtG3zAfqS7qRvDvsOftA6u67ALnv7COro2pEe6wX7YIcUmjKHf0CnNr6Or-9uHr_e0n3yHLiFNT2nE3SvyonVdwtfHf0nWH2--rT4Xd18-3a6u7wqvlBkL0TghGu9VxUrNvESpvS-NbGrmW0TtRS2bVgmNUDrvlDBMIgOpTV1WvFFiST4cdPdTvcPG5zWi6-w-hp2LT3Zwwf5f6cOj3Qw_rNCK83zAJbk4CsTh-4RptNthin2e2TLJjWCVUDJTVwfKxyGliO3JgYGdc7BzDvZvDrnj3b-Dnfg_h88APQJz50ku6wmZhSqYXd8ekG0ah3hiJNfZiItcf3-ot26wbhNDsusHDqwEYBJMCeI3okiiaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428319354</pqid></control><display><type>article</type><title>Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jao, Li-En ; Wente, Susan R. ; Chen, Wenbiao</creator><creatorcontrib>Jao, Li-En ; Wente, Susan R. ; Chen, Wenbiao</creatorcontrib><description>A simple and robust method for targeted mutagenesis in zebrafish has long been sought. Previous methods generate monoallelic mutations in the germ line of F0 animals, usually delaying homozygosity for the mutation to the F2 generation. Generation of robust biallelic mutations in the F0 would allow for phenotypic analysis directly in injected animals. Recently the type II prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been adapted to serve as a targeted genome mutagenesis tool. Here we report an improved CRISPR/Cas system in zebrafish with custom guide RNAs and a zebrafish codon-optimized Cas9 protein that efficiently targeted a reporter transgene Tg(-5.1mnx1:egfp) and four endogenous loci (tyr , golden , mitfa , and ddx19). Mutagenesis rates reached 75–99%, indicating that most cells contained biallelic mutations. Recessive null-like phenotypes were observed in four of the five targeting cases, supporting high rates of biallelic gene disruption. We also observed efficient germ-line transmission of the Cas9-induced mutations. Finally, five genomic loci can be targeted simultaneously, resulting in multiple loss-of-function phenotypes in the same injected fish. This CRISPR/Cas9 system represents a highly effective and scalable gene knockout method in zebrafish and has the potential for applications in other model organisms.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1308335110</identifier><identifier>PMID: 23918387</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Breeding - methods ; Deoxyribonucleases - genetics ; Embryos ; Gene Knockout Techniques - methods ; Genetic Engineering - methods ; Genetic loci ; Genetic mutation ; Genome - genetics ; Genomes ; Genomics ; Genotype & phenotype ; Guide RNA ; Inverted Repeat Sequences - genetics ; Mutagenesis ; Mutagenesis, Site-Directed - methods ; Mutation ; Phenotype ; Phenotypes ; Pigmentation ; Prokaryotes ; Proteins ; RNA ; Zebrafish ; Zebrafish - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (34), p.13904-13909</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 20, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-3da33dcc591671c4e47cc684db1cfee7c3b4df537e06aca53814e10478b692d53</citedby><cites>FETCH-LOGICAL-c558t-3da33dcc591671c4e47cc684db1cfee7c3b4df537e06aca53814e10478b692d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/34.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42713023$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42713023$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23918387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jao, Li-En</creatorcontrib><creatorcontrib>Wente, Susan R.</creatorcontrib><creatorcontrib>Chen, Wenbiao</creatorcontrib><title>Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A simple and robust method for targeted mutagenesis in zebrafish has long been sought. Previous methods generate monoallelic mutations in the germ line of F0 animals, usually delaying homozygosity for the mutation to the F2 generation. Generation of robust biallelic mutations in the F0 would allow for phenotypic analysis directly in injected animals. Recently the type II prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been adapted to serve as a targeted genome mutagenesis tool. Here we report an improved CRISPR/Cas system in zebrafish with custom guide RNAs and a zebrafish codon-optimized Cas9 protein that efficiently targeted a reporter transgene Tg(-5.1mnx1:egfp) and four endogenous loci (tyr , golden , mitfa , and ddx19). Mutagenesis rates reached 75–99%, indicating that most cells contained biallelic mutations. Recessive null-like phenotypes were observed in four of the five targeting cases, supporting high rates of biallelic gene disruption. We also observed efficient germ-line transmission of the Cas9-induced mutations. Finally, five genomic loci can be targeted simultaneously, resulting in multiple loss-of-function phenotypes in the same injected fish. This CRISPR/Cas9 system represents a highly effective and scalable gene knockout method in zebrafish and has the potential for applications in other model organisms.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Breeding - methods</subject><subject>Deoxyribonucleases - genetics</subject><subject>Embryos</subject><subject>Gene Knockout Techniques - methods</subject><subject>Genetic Engineering - methods</subject><subject>Genetic loci</subject><subject>Genetic mutation</subject><subject>Genome - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Guide RNA</subject><subject>Inverted Repeat Sequences - genetics</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed - methods</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Pigmentation</subject><subject>Prokaryotes</subject><subject>Proteins</subject><subject>RNA</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1v1DAQxS0EotuFMyfAUs9px1-xc0GqVgUqVQK17NlynMnWq2yy2Ami_PU42mWBi32Y37w3M4-QNwwuGWhxte9dumQCjBCKMXhGFgwqVpSygudkAcB1YSSXZ-Q8pS0AVMrAS3LGRcWMMHpB1jdtG3zAfqS7qRvDvsOftA6u67ALnv7COro2pEe6wX7YIcUmjKHf0CnNr6Or-9uHr_e0n3yHLiFNT2nE3SvyonVdwtfHf0nWH2--rT4Xd18-3a6u7wqvlBkL0TghGu9VxUrNvESpvS-NbGrmW0TtRS2bVgmNUDrvlDBMIgOpTV1WvFFiST4cdPdTvcPG5zWi6-w-hp2LT3Zwwf5f6cOj3Qw_rNCK83zAJbk4CsTh-4RptNthin2e2TLJjWCVUDJTVwfKxyGliO3JgYGdc7BzDvZvDrnj3b-Dnfg_h88APQJz50ku6wmZhSqYXd8ekG0ah3hiJNfZiItcf3-ot26wbhNDsusHDqwEYBJMCeI3okiiaw</recordid><startdate>20130820</startdate><enddate>20130820</enddate><creator>Jao, Li-En</creator><creator>Wente, Susan R.</creator><creator>Chen, Wenbiao</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130820</creationdate><title>Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system</title><author>Jao, Li-En ; Wente, Susan R. ; Chen, Wenbiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-3da33dcc591671c4e47cc684db1cfee7c3b4df537e06aca53814e10478b692d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Breeding - methods</topic><topic>Deoxyribonucleases - genetics</topic><topic>Embryos</topic><topic>Gene Knockout Techniques - methods</topic><topic>Genetic Engineering - methods</topic><topic>Genetic loci</topic><topic>Genetic mutation</topic><topic>Genome - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Guide RNA</topic><topic>Inverted Repeat Sequences - genetics</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed - methods</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Pigmentation</topic><topic>Prokaryotes</topic><topic>Proteins</topic><topic>RNA</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jao, Li-En</creatorcontrib><creatorcontrib>Wente, Susan R.</creatorcontrib><creatorcontrib>Chen, Wenbiao</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jao, Li-En</au><au>Wente, Susan R.</au><au>Chen, Wenbiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-08-20</date><risdate>2013</risdate><volume>110</volume><issue>34</issue><spage>13904</spage><epage>13909</epage><pages>13904-13909</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A simple and robust method for targeted mutagenesis in zebrafish has long been sought. Previous methods generate monoallelic mutations in the germ line of F0 animals, usually delaying homozygosity for the mutation to the F2 generation. Generation of robust biallelic mutations in the F0 would allow for phenotypic analysis directly in injected animals. Recently the type II prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been adapted to serve as a targeted genome mutagenesis tool. Here we report an improved CRISPR/Cas system in zebrafish with custom guide RNAs and a zebrafish codon-optimized Cas9 protein that efficiently targeted a reporter transgene Tg(-5.1mnx1:egfp) and four endogenous loci (tyr , golden , mitfa , and ddx19). Mutagenesis rates reached 75–99%, indicating that most cells contained biallelic mutations. Recessive null-like phenotypes were observed in four of the five targeting cases, supporting high rates of biallelic gene disruption. We also observed efficient germ-line transmission of the Cas9-induced mutations. Finally, five genomic loci can be targeted simultaneously, resulting in multiple loss-of-function phenotypes in the same injected fish. This CRISPR/Cas9 system represents a highly effective and scalable gene knockout method in zebrafish and has the potential for applications in other model organisms.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23918387</pmid><doi>10.1073/pnas.1308335110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (34), p.13904-13909 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1428319354 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Breeding - methods Deoxyribonucleases - genetics Embryos Gene Knockout Techniques - methods Genetic Engineering - methods Genetic loci Genetic mutation Genome - genetics Genomes Genomics Genotype & phenotype Guide RNA Inverted Repeat Sequences - genetics Mutagenesis Mutagenesis, Site-Directed - methods Mutation Phenotype Phenotypes Pigmentation Prokaryotes Proteins RNA Zebrafish Zebrafish - genetics |
title | Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20multiplex%20biallelic%20zebrafish%20genome%20editing%20using%20a%20CRISPR%20nuclease%20system&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jao,%20Li-En&rft.date=2013-08-20&rft.volume=110&rft.issue=34&rft.spage=13904&rft.epage=13909&rft.pages=13904-13909&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1308335110&rft_dat=%3Cjstor_proqu%3E42713023%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1428319354&rft_id=info:pmid/23918387&rft_jstor_id=42713023&rfr_iscdi=true |