Detection of radiation-induced lung injury using hyperpolarized 13C magnetic resonance spectroscopy and imaging
Radiation‐induced lung injury limits radiotherapy of thoracic cancers. Detection of radiation pneumonitis associated with early radiation‐induced lung injury (2–4 weeks postirradiation) may provide an opportunity to adjust treatment, before the onset of acute pneumonitis and/or irreversible fibrosis...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2013-09, Vol.70 (3), p.601-609 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 609 |
---|---|
container_issue | 3 |
container_start_page | 601 |
container_title | Magnetic resonance in medicine |
container_volume | 70 |
creator | Thind, K. Chen, A. Friesen-Waldner, L. Ouriadov, A. Scholl, T. J. Fox, M. Wong, E. VanDyk, J. Hope, A. Santyr, G. |
description | Radiation‐induced lung injury limits radiotherapy of thoracic cancers. Detection of radiation pneumonitis associated with early radiation‐induced lung injury (2–4 weeks postirradiation) may provide an opportunity to adjust treatment, before the onset of acute pneumonitis and/or irreversible fibrosis. In this study, localized magnetic resonance (MR) spectroscopy and imaging of hyperpolarized 13C‐pyruvate (pyruvate) and 13C‐lactate (lactate) were performed in the thorax and kidney regions of rats 2 weeks following whole‐thorax irradiation (14 Gy). Lactate‐to‐pyruvate signal ratio was observed to increase by 110% (P < 0.01), 57% (P < 0.02), and 107% (P < 0.01), respectively, in the thorax, lung, and heart tissues of the radiated rats compared with healthy age‐matched rats. This was consistent with lung inflammation confirmed using cell micrographs of bronchioalveolar lavage specimens and decreases in arterial oxygen partial pressure (paO2), indicative of hypoxia. No statistically significant difference was observed in either lactate‐to‐pyruvate signal ratios in the kidney region (P = 0.50) between the healthy (0.215 ± 0.100) and radiated cohorts (0.215 ± 0.054) or in blood lactate levels (P = 0.69) in the healthy (1.255 ± 0.247 mmol/L) and the radiated cohorts (1.325 ± 0.214 mmol/L), confirming that the injury is localized to the thorax. This work demonstrates the feasibility of hyperpolarized 13C metabolic MR spectroscopy and imaging for detection of early radiation‐induced lung injury. Magn Reson Med 70:601–609, 2013. © 2012 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/mrm.24525 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1428061643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055530711</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1065-76069274c25f5b75d07f5f047bbaf9bfe159deb859675676426ef46cd74cb93e3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcPfoOAz92SNH-WR5m6CZvCUPQtpG06M7ekJi1aP71xE5_uPXB-514OAJcYjTBCZLwLuxGhjLAjMMCMkIwwSY_BAAmKshxLegrOYtwghKQUdAD8jWlN2VrvoK9h0JXVvyKzrupKU8Ft59bQuk0XethFm8Rb35jQ-K0O9jsZcD6FO712prUlDCZ6p11pYGxSavCx9E0PtaugTaaEn4OTWm-jufibQ_B8d_s0nWeLx9n99HqRWYw4ywRHXBJBS8JqVghWIVGzGlFRFLqWRW0wk5UpJkxywbjglHBTU15WCSlkbvIhuDrkNsF_dCa2auO74NJJhSmZII45zZNrfHB92q3pVRPSl6FXGKnfMlUqU-3LVMvVcr8kIjsQNrbm65_Q4V1xkQumXh5miq9eF2Qm52qa_wAir3oE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428061643</pqid></control><display><type>article</type><title>Detection of radiation-induced lung injury using hyperpolarized 13C magnetic resonance spectroscopy and imaging</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Thind, K. ; Chen, A. ; Friesen-Waldner, L. ; Ouriadov, A. ; Scholl, T. J. ; Fox, M. ; Wong, E. ; VanDyk, J. ; Hope, A. ; Santyr, G.</creator><creatorcontrib>Thind, K. ; Chen, A. ; Friesen-Waldner, L. ; Ouriadov, A. ; Scholl, T. J. ; Fox, M. ; Wong, E. ; VanDyk, J. ; Hope, A. ; Santyr, G.</creatorcontrib><description>Radiation‐induced lung injury limits radiotherapy of thoracic cancers. Detection of radiation pneumonitis associated with early radiation‐induced lung injury (2–4 weeks postirradiation) may provide an opportunity to adjust treatment, before the onset of acute pneumonitis and/or irreversible fibrosis. In this study, localized magnetic resonance (MR) spectroscopy and imaging of hyperpolarized 13C‐pyruvate (pyruvate) and 13C‐lactate (lactate) were performed in the thorax and kidney regions of rats 2 weeks following whole‐thorax irradiation (14 Gy). Lactate‐to‐pyruvate signal ratio was observed to increase by 110% (P < 0.01), 57% (P < 0.02), and 107% (P < 0.01), respectively, in the thorax, lung, and heart tissues of the radiated rats compared with healthy age‐matched rats. This was consistent with lung inflammation confirmed using cell micrographs of bronchioalveolar lavage specimens and decreases in arterial oxygen partial pressure (paO2), indicative of hypoxia. No statistically significant difference was observed in either lactate‐to‐pyruvate signal ratios in the kidney region (P = 0.50) between the healthy (0.215 ± 0.100) and radiated cohorts (0.215 ± 0.054) or in blood lactate levels (P = 0.69) in the healthy (1.255 ± 0.247 mmol/L) and the radiated cohorts (1.325 ± 0.214 mmol/L), confirming that the injury is localized to the thorax. This work demonstrates the feasibility of hyperpolarized 13C metabolic MR spectroscopy and imaging for detection of early radiation‐induced lung injury. Magn Reson Med 70:601–609, 2013. © 2012 Wiley Periodicals, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.24525</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>carbon-13 ; DNP ; hypoxia ; kidney ; lactate ; lung ; pyruvate ; radiation pneumonitis ; radiation therapy ; RILI</subject><ispartof>Magnetic resonance in medicine, 2013-09, Vol.70 (3), p.601-609</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.24525$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.24525$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27902,27903,45552,45553,46386,46810</link.rule.ids></links><search><creatorcontrib>Thind, K.</creatorcontrib><creatorcontrib>Chen, A.</creatorcontrib><creatorcontrib>Friesen-Waldner, L.</creatorcontrib><creatorcontrib>Ouriadov, A.</creatorcontrib><creatorcontrib>Scholl, T. J.</creatorcontrib><creatorcontrib>Fox, M.</creatorcontrib><creatorcontrib>Wong, E.</creatorcontrib><creatorcontrib>VanDyk, J.</creatorcontrib><creatorcontrib>Hope, A.</creatorcontrib><creatorcontrib>Santyr, G.</creatorcontrib><title>Detection of radiation-induced lung injury using hyperpolarized 13C magnetic resonance spectroscopy and imaging</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Radiation‐induced lung injury limits radiotherapy of thoracic cancers. Detection of radiation pneumonitis associated with early radiation‐induced lung injury (2–4 weeks postirradiation) may provide an opportunity to adjust treatment, before the onset of acute pneumonitis and/or irreversible fibrosis. In this study, localized magnetic resonance (MR) spectroscopy and imaging of hyperpolarized 13C‐pyruvate (pyruvate) and 13C‐lactate (lactate) were performed in the thorax and kidney regions of rats 2 weeks following whole‐thorax irradiation (14 Gy). Lactate‐to‐pyruvate signal ratio was observed to increase by 110% (P < 0.01), 57% (P < 0.02), and 107% (P < 0.01), respectively, in the thorax, lung, and heart tissues of the radiated rats compared with healthy age‐matched rats. This was consistent with lung inflammation confirmed using cell micrographs of bronchioalveolar lavage specimens and decreases in arterial oxygen partial pressure (paO2), indicative of hypoxia. No statistically significant difference was observed in either lactate‐to‐pyruvate signal ratios in the kidney region (P = 0.50) between the healthy (0.215 ± 0.100) and radiated cohorts (0.215 ± 0.054) or in blood lactate levels (P = 0.69) in the healthy (1.255 ± 0.247 mmol/L) and the radiated cohorts (1.325 ± 0.214 mmol/L), confirming that the injury is localized to the thorax. This work demonstrates the feasibility of hyperpolarized 13C metabolic MR spectroscopy and imaging for detection of early radiation‐induced lung injury. Magn Reson Med 70:601–609, 2013. © 2012 Wiley Periodicals, Inc.</description><subject>carbon-13</subject><subject>DNP</subject><subject>hypoxia</subject><subject>kidney</subject><subject>lactate</subject><subject>lung</subject><subject>pyruvate</subject><subject>radiation pneumonitis</subject><subject>radiation therapy</subject><subject>RILI</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOKcPfoOAz92SNH-WR5m6CZvCUPQtpG06M7ekJi1aP71xE5_uPXB-514OAJcYjTBCZLwLuxGhjLAjMMCMkIwwSY_BAAmKshxLegrOYtwghKQUdAD8jWlN2VrvoK9h0JXVvyKzrupKU8Ft59bQuk0XethFm8Rb35jQ-K0O9jsZcD6FO712prUlDCZ6p11pYGxSavCx9E0PtaugTaaEn4OTWm-jufibQ_B8d_s0nWeLx9n99HqRWYw4ywRHXBJBS8JqVghWIVGzGlFRFLqWRW0wk5UpJkxywbjglHBTU15WCSlkbvIhuDrkNsF_dCa2auO74NJJhSmZII45zZNrfHB92q3pVRPSl6FXGKnfMlUqU-3LVMvVcr8kIjsQNrbm65_Q4V1xkQumXh5miq9eF2Qm52qa_wAir3oE</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Thind, K.</creator><creator>Chen, A.</creator><creator>Friesen-Waldner, L.</creator><creator>Ouriadov, A.</creator><creator>Scholl, T. J.</creator><creator>Fox, M.</creator><creator>Wong, E.</creator><creator>VanDyk, J.</creator><creator>Hope, A.</creator><creator>Santyr, G.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope></search><sort><creationdate>201309</creationdate><title>Detection of radiation-induced lung injury using hyperpolarized 13C magnetic resonance spectroscopy and imaging</title><author>Thind, K. ; Chen, A. ; Friesen-Waldner, L. ; Ouriadov, A. ; Scholl, T. J. ; Fox, M. ; Wong, E. ; VanDyk, J. ; Hope, A. ; Santyr, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1065-76069274c25f5b75d07f5f047bbaf9bfe159deb859675676426ef46cd74cb93e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>carbon-13</topic><topic>DNP</topic><topic>hypoxia</topic><topic>kidney</topic><topic>lactate</topic><topic>lung</topic><topic>pyruvate</topic><topic>radiation pneumonitis</topic><topic>radiation therapy</topic><topic>RILI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thind, K.</creatorcontrib><creatorcontrib>Chen, A.</creatorcontrib><creatorcontrib>Friesen-Waldner, L.</creatorcontrib><creatorcontrib>Ouriadov, A.</creatorcontrib><creatorcontrib>Scholl, T. J.</creatorcontrib><creatorcontrib>Fox, M.</creatorcontrib><creatorcontrib>Wong, E.</creatorcontrib><creatorcontrib>VanDyk, J.</creatorcontrib><creatorcontrib>Hope, A.</creatorcontrib><creatorcontrib>Santyr, G.</creatorcontrib><collection>Istex</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thind, K.</au><au>Chen, A.</au><au>Friesen-Waldner, L.</au><au>Ouriadov, A.</au><au>Scholl, T. J.</au><au>Fox, M.</au><au>Wong, E.</au><au>VanDyk, J.</au><au>Hope, A.</au><au>Santyr, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of radiation-induced lung injury using hyperpolarized 13C magnetic resonance spectroscopy and imaging</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2013-09</date><risdate>2013</risdate><volume>70</volume><issue>3</issue><spage>601</spage><epage>609</epage><pages>601-609</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Radiation‐induced lung injury limits radiotherapy of thoracic cancers. Detection of radiation pneumonitis associated with early radiation‐induced lung injury (2–4 weeks postirradiation) may provide an opportunity to adjust treatment, before the onset of acute pneumonitis and/or irreversible fibrosis. In this study, localized magnetic resonance (MR) spectroscopy and imaging of hyperpolarized 13C‐pyruvate (pyruvate) and 13C‐lactate (lactate) were performed in the thorax and kidney regions of rats 2 weeks following whole‐thorax irradiation (14 Gy). Lactate‐to‐pyruvate signal ratio was observed to increase by 110% (P < 0.01), 57% (P < 0.02), and 107% (P < 0.01), respectively, in the thorax, lung, and heart tissues of the radiated rats compared with healthy age‐matched rats. This was consistent with lung inflammation confirmed using cell micrographs of bronchioalveolar lavage specimens and decreases in arterial oxygen partial pressure (paO2), indicative of hypoxia. No statistically significant difference was observed in either lactate‐to‐pyruvate signal ratios in the kidney region (P = 0.50) between the healthy (0.215 ± 0.100) and radiated cohorts (0.215 ± 0.054) or in blood lactate levels (P = 0.69) in the healthy (1.255 ± 0.247 mmol/L) and the radiated cohorts (1.325 ± 0.214 mmol/L), confirming that the injury is localized to the thorax. This work demonstrates the feasibility of hyperpolarized 13C metabolic MR spectroscopy and imaging for detection of early radiation‐induced lung injury. Magn Reson Med 70:601–609, 2013. © 2012 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mrm.24525</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2013-09, Vol.70 (3), p.601-609 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_journals_1428061643 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete |
subjects | carbon-13 DNP hypoxia kidney lactate lung pyruvate radiation pneumonitis radiation therapy RILI |
title | Detection of radiation-induced lung injury using hyperpolarized 13C magnetic resonance spectroscopy and imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20radiation-induced%20lung%20injury%20using%20hyperpolarized%2013C%20magnetic%20resonance%20spectroscopy%20and%20imaging&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Thind,%20K.&rft.date=2013-09&rft.volume=70&rft.issue=3&rft.spage=601&rft.epage=609&rft.pages=601-609&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.24525&rft_dat=%3Cproquest_wiley%3E3055530711%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1428061643&rft_id=info:pmid/&rfr_iscdi=true |