Application of Natural Element Method in Numerical Simulation of Crack Propagation

The properties of interpolation of nodal data, ease of imposing essential boundary conditions, and the computational efficiency are some of the most important advantages of natural element method based on the non-Sibsonian interpolation over other meshless methods based on the moving least squares a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Mechanical Engineering 2013, Vol.2013 (2013), p.1-6
Hauptverfasser: Gai, Shanshan, Zhang, Dunfu, Cheng, Gang, Weidong, Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 2013
container_start_page 1
container_title Advances in Mechanical Engineering
container_volume 2013
creator Gai, Shanshan
Zhang, Dunfu
Cheng, Gang
Weidong, Wang
description The properties of interpolation of nodal data, ease of imposing essential boundary conditions, and the computational efficiency are some of the most important advantages of natural element method based on the non-Sibsonian interpolation over other meshless methods based on the moving least squares approximants. Accurate imposition of essential boundary conditions is accomplished directly by constructing vector of the displacement field by using non-Sibsonian interpolation method, which is based on the Voronoi diagram and its dual Delaunay tessellation. The discrete control equations of natural element method are developed by utilizing the variational principle of elastic theory and combining the natural element method with the theory of the linear elastic fracture mechanics. Without the connectivity information of elements, the burdensome remeshing, which is used in finite element method, is avoided in the present natural element method. The analysis of crack propagation is simplified dramatically. The numerical examples reveal the advantages and effectiveness of the present method.
doi_str_mv 10.1155/2013/206981
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_1428011579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1155_2013/206981</sage_id><doaj_id>oai_doaj_org_article_58ced0db37744702a826774b66b660a1</doaj_id><sourcerecordid>3055292401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-11d742d887cfe65152bcb299be5e4ae7c5873849a6b0d50c746f0341438b77c3</originalsourceid><addsrcrecordid>eNptkc1LwzAYh4soOOZOnoWAF0GqSfPZ4xhTB3OK7h6SNJ2dbVPT9uB_b7ZK8SCE5OXlyfOG_KLoEsE7hCi9TyDCYWOpQCfRBDHBY4EIPB1rnJxHs7YtNKSQwQCmk-ht3jRlYVRXuBq4HGxU13tVgmVpK1t34Nl2Hy4DRQ02fWV9IEvwXlR9Od5YeGU-wat3jdodmxfRWa7K1s5-z2m0fVhuF0_x-uVxtZivY0ME62KEMk6STAhucssoook2OklTbaklynJDBceCpIppmFFoOGE5xAQRLDTnBk-j1aDNnNrLxheV8t_SqUIeG87vpPJdYUorqTA2g5nGnBPCYaJEwkKpGQsLKhRc14Or8e6rt20n9673dXi9RCQRMPwvTwN1O1DGu7b1Nh-nIigPEchDBHKIINA3A92qnf3j-xe9GlAbbDZXo5dQEqLCPzdyi_4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428011579</pqid></control><display><type>article</type><title>Application of Natural Element Method in Numerical Simulation of Crack Propagation</title><source>DOAJ Directory of Open Access Journals</source><source>Sage Journals GOLD Open Access 2024</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gai, Shanshan ; Zhang, Dunfu ; Cheng, Gang ; Weidong, Wang</creator><creatorcontrib>Gai, Shanshan ; Zhang, Dunfu ; Cheng, Gang ; Weidong, Wang</creatorcontrib><description>The properties of interpolation of nodal data, ease of imposing essential boundary conditions, and the computational efficiency are some of the most important advantages of natural element method based on the non-Sibsonian interpolation over other meshless methods based on the moving least squares approximants. Accurate imposition of essential boundary conditions is accomplished directly by constructing vector of the displacement field by using non-Sibsonian interpolation method, which is based on the Voronoi diagram and its dual Delaunay tessellation. The discrete control equations of natural element method are developed by utilizing the variational principle of elastic theory and combining the natural element method with the theory of the linear elastic fracture mechanics. Without the connectivity information of elements, the burdensome remeshing, which is used in finite element method, is avoided in the present natural element method. The analysis of crack propagation is simplified dramatically. The numerical examples reveal the advantages and effectiveness of the present method.</description><identifier>ISSN: 1687-8132</identifier><identifier>EISSN: 1687-8140</identifier><identifier>EISSN: 1687-8132</identifier><identifier>DOI: 10.1155/2013/206981</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Boundary conditions ; Civil engineering ; Crack propagation ; Electrical engineering ; Finite element analysis ; Fracture mechanics ; Methods ; Propagation ; Studies</subject><ispartof>Advances in Mechanical Engineering, 2013, Vol.2013 (2013), p.1-6</ispartof><rights>2013 Wang Weidong et al.</rights><rights>Copyright © 2013 Wang Weidong et al. Wang Weidong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-11d742d887cfe65152bcb299be5e4ae7c5873849a6b0d50c746f0341438b77c3</citedby><cites>FETCH-LOGICAL-c486t-11d742d887cfe65152bcb299be5e4ae7c5873849a6b0d50c746f0341438b77c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1155/2013/206981$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1155/2013/206981$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,4024,21966,27853,27923,27924,27925,44945,45333</link.rule.ids></links><search><creatorcontrib>Gai, Shanshan</creatorcontrib><creatorcontrib>Zhang, Dunfu</creatorcontrib><creatorcontrib>Cheng, Gang</creatorcontrib><creatorcontrib>Weidong, Wang</creatorcontrib><title>Application of Natural Element Method in Numerical Simulation of Crack Propagation</title><title>Advances in Mechanical Engineering</title><description>The properties of interpolation of nodal data, ease of imposing essential boundary conditions, and the computational efficiency are some of the most important advantages of natural element method based on the non-Sibsonian interpolation over other meshless methods based on the moving least squares approximants. Accurate imposition of essential boundary conditions is accomplished directly by constructing vector of the displacement field by using non-Sibsonian interpolation method, which is based on the Voronoi diagram and its dual Delaunay tessellation. The discrete control equations of natural element method are developed by utilizing the variational principle of elastic theory and combining the natural element method with the theory of the linear elastic fracture mechanics. Without the connectivity information of elements, the burdensome remeshing, which is used in finite element method, is avoided in the present natural element method. The analysis of crack propagation is simplified dramatically. The numerical examples reveal the advantages and effectiveness of the present method.</description><subject>Boundary conditions</subject><subject>Civil engineering</subject><subject>Crack propagation</subject><subject>Electrical engineering</subject><subject>Finite element analysis</subject><subject>Fracture mechanics</subject><subject>Methods</subject><subject>Propagation</subject><subject>Studies</subject><issn>1687-8132</issn><issn>1687-8140</issn><issn>1687-8132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNptkc1LwzAYh4soOOZOnoWAF0GqSfPZ4xhTB3OK7h6SNJ2dbVPT9uB_b7ZK8SCE5OXlyfOG_KLoEsE7hCi9TyDCYWOpQCfRBDHBY4EIPB1rnJxHs7YtNKSQwQCmk-ht3jRlYVRXuBq4HGxU13tVgmVpK1t34Nl2Hy4DRQ02fWV9IEvwXlR9Od5YeGU-wat3jdodmxfRWa7K1s5-z2m0fVhuF0_x-uVxtZivY0ME62KEMk6STAhucssoook2OklTbaklynJDBceCpIppmFFoOGE5xAQRLDTnBk-j1aDNnNrLxheV8t_SqUIeG87vpPJdYUorqTA2g5nGnBPCYaJEwkKpGQsLKhRc14Or8e6rt20n9673dXi9RCQRMPwvTwN1O1DGu7b1Nh-nIigPEchDBHKIINA3A92qnf3j-xe9GlAbbDZXo5dQEqLCPzdyi_4</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Gai, Shanshan</creator><creator>Zhang, Dunfu</creator><creator>Cheng, Gang</creator><creator>Weidong, Wang</creator><general>Hindawi Puplishing Corporation</general><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>2013</creationdate><title>Application of Natural Element Method in Numerical Simulation of Crack Propagation</title><author>Gai, Shanshan ; Zhang, Dunfu ; Cheng, Gang ; Weidong, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-11d742d887cfe65152bcb299be5e4ae7c5873849a6b0d50c746f0341438b77c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundary conditions</topic><topic>Civil engineering</topic><topic>Crack propagation</topic><topic>Electrical engineering</topic><topic>Finite element analysis</topic><topic>Fracture mechanics</topic><topic>Methods</topic><topic>Propagation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gai, Shanshan</creatorcontrib><creatorcontrib>Zhang, Dunfu</creatorcontrib><creatorcontrib>Cheng, Gang</creatorcontrib><creatorcontrib>Weidong, Wang</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gai, Shanshan</au><au>Zhang, Dunfu</au><au>Cheng, Gang</au><au>Weidong, Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Natural Element Method in Numerical Simulation of Crack Propagation</atitle><jtitle>Advances in Mechanical Engineering</jtitle><date>2013</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1687-8132</issn><eissn>1687-8140</eissn><eissn>1687-8132</eissn><abstract>The properties of interpolation of nodal data, ease of imposing essential boundary conditions, and the computational efficiency are some of the most important advantages of natural element method based on the non-Sibsonian interpolation over other meshless methods based on the moving least squares approximants. Accurate imposition of essential boundary conditions is accomplished directly by constructing vector of the displacement field by using non-Sibsonian interpolation method, which is based on the Voronoi diagram and its dual Delaunay tessellation. The discrete control equations of natural element method are developed by utilizing the variational principle of elastic theory and combining the natural element method with the theory of the linear elastic fracture mechanics. Without the connectivity information of elements, the burdensome remeshing, which is used in finite element method, is avoided in the present natural element method. The analysis of crack propagation is simplified dramatically. The numerical examples reveal the advantages and effectiveness of the present method.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2013/206981</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-8132
ispartof Advances in Mechanical Engineering, 2013, Vol.2013 (2013), p.1-6
issn 1687-8132
1687-8140
1687-8132
language eng
recordid cdi_proquest_journals_1428011579
source DOAJ Directory of Open Access Journals; Sage Journals GOLD Open Access 2024; EZB-FREE-00999 freely available EZB journals
subjects Boundary conditions
Civil engineering
Crack propagation
Electrical engineering
Finite element analysis
Fracture mechanics
Methods
Propagation
Studies
title Application of Natural Element Method in Numerical Simulation of Crack Propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Natural%20Element%20Method%20in%20Numerical%20Simulation%20of%20Crack%20Propagation&rft.jtitle=Advances%20in%20Mechanical%20Engineering&rft.au=Gai,%20Shanshan&rft.date=2013&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1687-8132&rft.eissn=1687-8140&rft_id=info:doi/10.1155/2013/206981&rft_dat=%3Cproquest_doaj_%3E3055292401%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1428011579&rft_id=info:pmid/&rft_sage_id=10.1155_2013/206981&rft_doaj_id=oai_doaj_org_article_58ced0db37744702a826774b66b660a1&rfr_iscdi=true