An emergent approach to analogical inference
In recent years, a growing number of researchers have proposed that analogy is a core component of human cognition. According to the dominant theoretical viewpoint, analogical reasoning requires a specific suite of cognitive machinery, including explicitly coded symbolic representations and a mappin...
Gespeichert in:
Veröffentlicht in: | Connection science 2013-03, Vol.25 (1), p.27-53 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | 1 |
container_start_page | 27 |
container_title | Connection science |
container_volume | 25 |
creator | Thibodeau, Paul H. Flusberg, Stephen J. Glick, Jeremy J. Sternberg, Daniel A. |
description | In recent years, a growing number of researchers have proposed that analogy is a core component of human cognition. According to the dominant theoretical viewpoint, analogical reasoning requires a specific suite of cognitive machinery, including explicitly coded symbolic representations and a mapping or binding mechanism that operates over these representations. Here we offer an alternative approach: we find that analogical inference can emerge naturally and spontaneously from a relatively simple, error-driven learning mechanism without the need to posit any additional analogy-specific machinery. The results also parallel findings from the developmental literature on analogy, demonstrating a shift from an initial reliance on surface feature similarity to the use of relational similarity later in training. Variants of the model allow us to consider and rule out alternative accounts of its performance. We conclude by discussing how these findings can potentially refine our understanding of the processes that are required to perform analogical inference. |
doi_str_mv | 10.1080/09540091.2013.821458 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1426211685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049186041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-5b12960e43cabc56eda913dcc8220bb07d80fb913e5ae04644845b08eff5be353</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gYeAV1Nn9iNuTlKKX1Dwoudls5mtKWm27qZI_70J0aungeF5X2Yexq4RFgga7qBUEqDEBQcUC81RKn3CZigKyEGW8pTNRiQfmXN2kdIWABQgztjtsstoR3FDXZ_Z_T4G6z6zPmS2s23YNM62WdN5itQ5umRn3raJrn7nnH08Pb6vXvL12_PrarnOndDY56pCXhZAUjhbOVVQbUsUtXOac6gquK81-GpYkbIEspBSS1WBJu9VRUKJObuZeodzvg6UerMNhzgclAxKXnDEQo-UnCgXQ0qRvNnHZmfj0SCY0Yv582JGL2byMsQeptjwVog7-x1iW5veHtsQfbSda5IR_zb8AM-jZ8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426211685</pqid></control><display><type>article</type><title>An emergent approach to analogical inference</title><source>Alma/SFX Local Collection</source><creator>Thibodeau, Paul H. ; Flusberg, Stephen J. ; Glick, Jeremy J. ; Sternberg, Daniel A.</creator><creatorcontrib>Thibodeau, Paul H. ; Flusberg, Stephen J. ; Glick, Jeremy J. ; Sternberg, Daniel A.</creatorcontrib><description>In recent years, a growing number of researchers have proposed that analogy is a core component of human cognition. According to the dominant theoretical viewpoint, analogical reasoning requires a specific suite of cognitive machinery, including explicitly coded symbolic representations and a mapping or binding mechanism that operates over these representations. Here we offer an alternative approach: we find that analogical inference can emerge naturally and spontaneously from a relatively simple, error-driven learning mechanism without the need to posit any additional analogy-specific machinery. The results also parallel findings from the developmental literature on analogy, demonstrating a shift from an initial reliance on surface feature similarity to the use of relational similarity later in training. Variants of the model allow us to consider and rule out alternative accounts of its performance. We conclude by discussing how these findings can potentially refine our understanding of the processes that are required to perform analogical inference.</description><identifier>ISSN: 0954-0091</identifier><identifier>EISSN: 1360-0494</identifier><identifier>DOI: 10.1080/09540091.2013.821458</identifier><identifier>CODEN: CNTSEU</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>analogy ; Cognition & reasoning ; connectionism ; development ; inference ; Learning ; Mapping ; neural network ; Neural networks ; relational reasoning ; Researchers</subject><ispartof>Connection science, 2013-03, Vol.25 (1), p.27-53</ispartof><rights>Copyright Taylor & Francis Group, LLC 2013</rights><rights>Copyright Taylor & Francis Ltd. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-5b12960e43cabc56eda913dcc8220bb07d80fb913e5ae04644845b08eff5be353</citedby><cites>FETCH-LOGICAL-c381t-5b12960e43cabc56eda913dcc8220bb07d80fb913e5ae04644845b08eff5be353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Thibodeau, Paul H.</creatorcontrib><creatorcontrib>Flusberg, Stephen J.</creatorcontrib><creatorcontrib>Glick, Jeremy J.</creatorcontrib><creatorcontrib>Sternberg, Daniel A.</creatorcontrib><title>An emergent approach to analogical inference</title><title>Connection science</title><description>In recent years, a growing number of researchers have proposed that analogy is a core component of human cognition. According to the dominant theoretical viewpoint, analogical reasoning requires a specific suite of cognitive machinery, including explicitly coded symbolic representations and a mapping or binding mechanism that operates over these representations. Here we offer an alternative approach: we find that analogical inference can emerge naturally and spontaneously from a relatively simple, error-driven learning mechanism without the need to posit any additional analogy-specific machinery. The results also parallel findings from the developmental literature on analogy, demonstrating a shift from an initial reliance on surface feature similarity to the use of relational similarity later in training. Variants of the model allow us to consider and rule out alternative accounts of its performance. We conclude by discussing how these findings can potentially refine our understanding of the processes that are required to perform analogical inference.</description><subject>analogy</subject><subject>Cognition & reasoning</subject><subject>connectionism</subject><subject>development</subject><subject>inference</subject><subject>Learning</subject><subject>Mapping</subject><subject>neural network</subject><subject>Neural networks</subject><subject>relational reasoning</subject><subject>Researchers</subject><issn>0954-0091</issn><issn>1360-0494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gYeAV1Nn9iNuTlKKX1Dwoudls5mtKWm27qZI_70J0aungeF5X2Yexq4RFgga7qBUEqDEBQcUC81RKn3CZigKyEGW8pTNRiQfmXN2kdIWABQgztjtsstoR3FDXZ_Z_T4G6z6zPmS2s23YNM62WdN5itQ5umRn3raJrn7nnH08Pb6vXvL12_PrarnOndDY56pCXhZAUjhbOVVQbUsUtXOac6gquK81-GpYkbIEspBSS1WBJu9VRUKJObuZeodzvg6UerMNhzgclAxKXnDEQo-UnCgXQ0qRvNnHZmfj0SCY0Yv582JGL2byMsQeptjwVog7-x1iW5veHtsQfbSda5IR_zb8AM-jZ8Q</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Thibodeau, Paul H.</creator><creator>Flusberg, Stephen J.</creator><creator>Glick, Jeremy J.</creator><creator>Sternberg, Daniel A.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>NAPCQ</scope></search><sort><creationdate>20130301</creationdate><title>An emergent approach to analogical inference</title><author>Thibodeau, Paul H. ; Flusberg, Stephen J. ; Glick, Jeremy J. ; Sternberg, Daniel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-5b12960e43cabc56eda913dcc8220bb07d80fb913e5ae04644845b08eff5be353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>analogy</topic><topic>Cognition & reasoning</topic><topic>connectionism</topic><topic>development</topic><topic>inference</topic><topic>Learning</topic><topic>Mapping</topic><topic>neural network</topic><topic>Neural networks</topic><topic>relational reasoning</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thibodeau, Paul H.</creatorcontrib><creatorcontrib>Flusberg, Stephen J.</creatorcontrib><creatorcontrib>Glick, Jeremy J.</creatorcontrib><creatorcontrib>Sternberg, Daniel A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Nursing & Allied Health Premium</collection><jtitle>Connection science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thibodeau, Paul H.</au><au>Flusberg, Stephen J.</au><au>Glick, Jeremy J.</au><au>Sternberg, Daniel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An emergent approach to analogical inference</atitle><jtitle>Connection science</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>25</volume><issue>1</issue><spage>27</spage><epage>53</epage><pages>27-53</pages><issn>0954-0091</issn><eissn>1360-0494</eissn><coden>CNTSEU</coden><abstract>In recent years, a growing number of researchers have proposed that analogy is a core component of human cognition. According to the dominant theoretical viewpoint, analogical reasoning requires a specific suite of cognitive machinery, including explicitly coded symbolic representations and a mapping or binding mechanism that operates over these representations. Here we offer an alternative approach: we find that analogical inference can emerge naturally and spontaneously from a relatively simple, error-driven learning mechanism without the need to posit any additional analogy-specific machinery. The results also parallel findings from the developmental literature on analogy, demonstrating a shift from an initial reliance on surface feature similarity to the use of relational similarity later in training. Variants of the model allow us to consider and rule out alternative accounts of its performance. We conclude by discussing how these findings can potentially refine our understanding of the processes that are required to perform analogical inference.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/09540091.2013.821458</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-0091 |
ispartof | Connection science, 2013-03, Vol.25 (1), p.27-53 |
issn | 0954-0091 1360-0494 |
language | eng |
recordid | cdi_proquest_journals_1426211685 |
source | Alma/SFX Local Collection |
subjects | analogy Cognition & reasoning connectionism development inference Learning Mapping neural network Neural networks relational reasoning Researchers |
title | An emergent approach to analogical inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20emergent%20approach%20to%20analogical%20inference&rft.jtitle=Connection%20science&rft.au=Thibodeau,%20Paul%20H.&rft.date=2013-03-01&rft.volume=25&rft.issue=1&rft.spage=27&rft.epage=53&rft.pages=27-53&rft.issn=0954-0091&rft.eissn=1360-0494&rft.coden=CNTSEU&rft_id=info:doi/10.1080/09540091.2013.821458&rft_dat=%3Cproquest_cross%3E3049186041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426211685&rft_id=info:pmid/&rfr_iscdi=true |