An emergent approach to analogical inference

In recent years, a growing number of researchers have proposed that analogy is a core component of human cognition. According to the dominant theoretical viewpoint, analogical reasoning requires a specific suite of cognitive machinery, including explicitly coded symbolic representations and a mappin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Connection science 2013-03, Vol.25 (1), p.27-53
Hauptverfasser: Thibodeau, Paul H., Flusberg, Stephen J., Glick, Jeremy J., Sternberg, Daniel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue 1
container_start_page 27
container_title Connection science
container_volume 25
creator Thibodeau, Paul H.
Flusberg, Stephen J.
Glick, Jeremy J.
Sternberg, Daniel A.
description In recent years, a growing number of researchers have proposed that analogy is a core component of human cognition. According to the dominant theoretical viewpoint, analogical reasoning requires a specific suite of cognitive machinery, including explicitly coded symbolic representations and a mapping or binding mechanism that operates over these representations. Here we offer an alternative approach: we find that analogical inference can emerge naturally and spontaneously from a relatively simple, error-driven learning mechanism without the need to posit any additional analogy-specific machinery. The results also parallel findings from the developmental literature on analogy, demonstrating a shift from an initial reliance on surface feature similarity to the use of relational similarity later in training. Variants of the model allow us to consider and rule out alternative accounts of its performance. We conclude by discussing how these findings can potentially refine our understanding of the processes that are required to perform analogical inference.
doi_str_mv 10.1080/09540091.2013.821458
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1426211685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049186041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-5b12960e43cabc56eda913dcc8220bb07d80fb913e5ae04644845b08eff5be353</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gYeAV1Nn9iNuTlKKX1Dwoudls5mtKWm27qZI_70J0aungeF5X2Yexq4RFgga7qBUEqDEBQcUC81RKn3CZigKyEGW8pTNRiQfmXN2kdIWABQgztjtsstoR3FDXZ_Z_T4G6z6zPmS2s23YNM62WdN5itQ5umRn3raJrn7nnH08Pb6vXvL12_PrarnOndDY56pCXhZAUjhbOVVQbUsUtXOac6gquK81-GpYkbIEspBSS1WBJu9VRUKJObuZeodzvg6UerMNhzgclAxKXnDEQo-UnCgXQ0qRvNnHZmfj0SCY0Yv582JGL2byMsQeptjwVog7-x1iW5veHtsQfbSda5IR_zb8AM-jZ8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426211685</pqid></control><display><type>article</type><title>An emergent approach to analogical inference</title><source>Alma/SFX Local Collection</source><creator>Thibodeau, Paul H. ; Flusberg, Stephen J. ; Glick, Jeremy J. ; Sternberg, Daniel A.</creator><creatorcontrib>Thibodeau, Paul H. ; Flusberg, Stephen J. ; Glick, Jeremy J. ; Sternberg, Daniel A.</creatorcontrib><description>In recent years, a growing number of researchers have proposed that analogy is a core component of human cognition. According to the dominant theoretical viewpoint, analogical reasoning requires a specific suite of cognitive machinery, including explicitly coded symbolic representations and a mapping or binding mechanism that operates over these representations. Here we offer an alternative approach: we find that analogical inference can emerge naturally and spontaneously from a relatively simple, error-driven learning mechanism without the need to posit any additional analogy-specific machinery. The results also parallel findings from the developmental literature on analogy, demonstrating a shift from an initial reliance on surface feature similarity to the use of relational similarity later in training. Variants of the model allow us to consider and rule out alternative accounts of its performance. We conclude by discussing how these findings can potentially refine our understanding of the processes that are required to perform analogical inference.</description><identifier>ISSN: 0954-0091</identifier><identifier>EISSN: 1360-0494</identifier><identifier>DOI: 10.1080/09540091.2013.821458</identifier><identifier>CODEN: CNTSEU</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>analogy ; Cognition &amp; reasoning ; connectionism ; development ; inference ; Learning ; Mapping ; neural network ; Neural networks ; relational reasoning ; Researchers</subject><ispartof>Connection science, 2013-03, Vol.25 (1), p.27-53</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2013</rights><rights>Copyright Taylor &amp; Francis Ltd. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-5b12960e43cabc56eda913dcc8220bb07d80fb913e5ae04644845b08eff5be353</citedby><cites>FETCH-LOGICAL-c381t-5b12960e43cabc56eda913dcc8220bb07d80fb913e5ae04644845b08eff5be353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Thibodeau, Paul H.</creatorcontrib><creatorcontrib>Flusberg, Stephen J.</creatorcontrib><creatorcontrib>Glick, Jeremy J.</creatorcontrib><creatorcontrib>Sternberg, Daniel A.</creatorcontrib><title>An emergent approach to analogical inference</title><title>Connection science</title><description>In recent years, a growing number of researchers have proposed that analogy is a core component of human cognition. According to the dominant theoretical viewpoint, analogical reasoning requires a specific suite of cognitive machinery, including explicitly coded symbolic representations and a mapping or binding mechanism that operates over these representations. Here we offer an alternative approach: we find that analogical inference can emerge naturally and spontaneously from a relatively simple, error-driven learning mechanism without the need to posit any additional analogy-specific machinery. The results also parallel findings from the developmental literature on analogy, demonstrating a shift from an initial reliance on surface feature similarity to the use of relational similarity later in training. Variants of the model allow us to consider and rule out alternative accounts of its performance. We conclude by discussing how these findings can potentially refine our understanding of the processes that are required to perform analogical inference.</description><subject>analogy</subject><subject>Cognition &amp; reasoning</subject><subject>connectionism</subject><subject>development</subject><subject>inference</subject><subject>Learning</subject><subject>Mapping</subject><subject>neural network</subject><subject>Neural networks</subject><subject>relational reasoning</subject><subject>Researchers</subject><issn>0954-0091</issn><issn>1360-0494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gYeAV1Nn9iNuTlKKX1Dwoudls5mtKWm27qZI_70J0aungeF5X2Yexq4RFgga7qBUEqDEBQcUC81RKn3CZigKyEGW8pTNRiQfmXN2kdIWABQgztjtsstoR3FDXZ_Z_T4G6z6zPmS2s23YNM62WdN5itQ5umRn3raJrn7nnH08Pb6vXvL12_PrarnOndDY56pCXhZAUjhbOVVQbUsUtXOac6gquK81-GpYkbIEspBSS1WBJu9VRUKJObuZeodzvg6UerMNhzgclAxKXnDEQo-UnCgXQ0qRvNnHZmfj0SCY0Yv582JGL2byMsQeptjwVog7-x1iW5veHtsQfbSda5IR_zb8AM-jZ8Q</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Thibodeau, Paul H.</creator><creator>Flusberg, Stephen J.</creator><creator>Glick, Jeremy J.</creator><creator>Sternberg, Daniel A.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>NAPCQ</scope></search><sort><creationdate>20130301</creationdate><title>An emergent approach to analogical inference</title><author>Thibodeau, Paul H. ; Flusberg, Stephen J. ; Glick, Jeremy J. ; Sternberg, Daniel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-5b12960e43cabc56eda913dcc8220bb07d80fb913e5ae04644845b08eff5be353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>analogy</topic><topic>Cognition &amp; reasoning</topic><topic>connectionism</topic><topic>development</topic><topic>inference</topic><topic>Learning</topic><topic>Mapping</topic><topic>neural network</topic><topic>Neural networks</topic><topic>relational reasoning</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thibodeau, Paul H.</creatorcontrib><creatorcontrib>Flusberg, Stephen J.</creatorcontrib><creatorcontrib>Glick, Jeremy J.</creatorcontrib><creatorcontrib>Sternberg, Daniel A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Connection science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thibodeau, Paul H.</au><au>Flusberg, Stephen J.</au><au>Glick, Jeremy J.</au><au>Sternberg, Daniel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An emergent approach to analogical inference</atitle><jtitle>Connection science</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>25</volume><issue>1</issue><spage>27</spage><epage>53</epage><pages>27-53</pages><issn>0954-0091</issn><eissn>1360-0494</eissn><coden>CNTSEU</coden><abstract>In recent years, a growing number of researchers have proposed that analogy is a core component of human cognition. According to the dominant theoretical viewpoint, analogical reasoning requires a specific suite of cognitive machinery, including explicitly coded symbolic representations and a mapping or binding mechanism that operates over these representations. Here we offer an alternative approach: we find that analogical inference can emerge naturally and spontaneously from a relatively simple, error-driven learning mechanism without the need to posit any additional analogy-specific machinery. The results also parallel findings from the developmental literature on analogy, demonstrating a shift from an initial reliance on surface feature similarity to the use of relational similarity later in training. Variants of the model allow us to consider and rule out alternative accounts of its performance. We conclude by discussing how these findings can potentially refine our understanding of the processes that are required to perform analogical inference.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/09540091.2013.821458</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0954-0091
ispartof Connection science, 2013-03, Vol.25 (1), p.27-53
issn 0954-0091
1360-0494
language eng
recordid cdi_proquest_journals_1426211685
source Alma/SFX Local Collection
subjects analogy
Cognition & reasoning
connectionism
development
inference
Learning
Mapping
neural network
Neural networks
relational reasoning
Researchers
title An emergent approach to analogical inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20emergent%20approach%20to%20analogical%20inference&rft.jtitle=Connection%20science&rft.au=Thibodeau,%20Paul%20H.&rft.date=2013-03-01&rft.volume=25&rft.issue=1&rft.spage=27&rft.epage=53&rft.pages=27-53&rft.issn=0954-0091&rft.eissn=1360-0494&rft.coden=CNTSEU&rft_id=info:doi/10.1080/09540091.2013.821458&rft_dat=%3Cproquest_cross%3E3049186041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426211685&rft_id=info:pmid/&rfr_iscdi=true