Subgroup Parameters based on Orthogonal Factorization

A new methodology to produce subgroup parameters has been developed based on orthogonal factorization of weighting functions. In the existent methods the weighting functions do not appear explicitly, which causes the inconvenience in producing subgroup parameters in some situations. In the present m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear science and technology 2007-01, Vol.44 (1), p.36
Hauptverfasser: YAMAMOTO, Toshihisa, TAKEDA, Toshikazu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 36
container_title Journal of nuclear science and technology
container_volume 44
creator YAMAMOTO, Toshihisa
TAKEDA, Toshikazu
description A new methodology to produce subgroup parameters has been developed based on orthogonal factorization of weighting functions. In the existent methods the weighting functions do not appear explicitly, which causes the inconvenience in producing subgroup parameters in some situations. In the present method, the weighting functions are tailored to the required conditions by the use of orthonormal factorization method of which mathematical background is based on the Lanczos method. The obtained weighting functions can be commonly used for any physical quantities in order to produce corresponding subgroup parameters. The superiority of this approach becomes eminent especially when multiple conditions are specified at the same time.The numerical results of two simple examples have revealed the potential of the applicability of the present method to general problems. We have concluded that the present method may be developed into an efficient tool to deal with wide variety of problems using subgroup-method-related methodology.
doi_str_mv 10.3327/jnst.44.36
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1420221590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044277781</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-385ffd5031420823c4f37ff82541e9c9e1ebb26299a4532aba2da648f1de98c13</originalsourceid><addsrcrecordid>eNotjkFLwzAYQIMoOKcXf0HBc2u-70u65CjDOWEwQT2Pr20yV2ZTk_Tir3eip8e7PJ4QtyArIlzc90PKlVIV1WdiBsZACajMuZhJiVgSEFyKq5T6k9aqNjOhX6dmH8M0Fi8c-dNlF1PRcHJdEYZiG_NH2IeBj8WK2xzi4ZvzIQzX4sLzMbmbf87F--rxbbkuN9un5-XDphwBKJdktPedlgQKpUFqlaeF9wa1Amdb68A1DdZoLStNyA1jx7UyHjpnTQs0F3d_3TGGr8mlvOvDFE87afebRARtJf0A05NGwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1420221590</pqid></control><display><type>article</type><title>Subgroup Parameters based on Orthogonal Factorization</title><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>YAMAMOTO, Toshihisa ; TAKEDA, Toshikazu</creator><creatorcontrib>YAMAMOTO, Toshihisa ; TAKEDA, Toshikazu</creatorcontrib><description>A new methodology to produce subgroup parameters has been developed based on orthogonal factorization of weighting functions. In the existent methods the weighting functions do not appear explicitly, which causes the inconvenience in producing subgroup parameters in some situations. In the present method, the weighting functions are tailored to the required conditions by the use of orthonormal factorization method of which mathematical background is based on the Lanczos method. The obtained weighting functions can be commonly used for any physical quantities in order to produce corresponding subgroup parameters. The superiority of this approach becomes eminent especially when multiple conditions are specified at the same time.The numerical results of two simple examples have revealed the potential of the applicability of the present method to general problems. We have concluded that the present method may be developed into an efficient tool to deal with wide variety of problems using subgroup-method-related methodology.</description><identifier>ISSN: 0022-3131</identifier><identifier>EISSN: 1881-1248</identifier><identifier>DOI: 10.3327/jnst.44.36</identifier><language>eng</language><publisher>Tokyo: Taylor &amp; Francis Ltd</publisher><ispartof>Journal of nuclear science and technology, 2007-01, Vol.44 (1), p.36</ispartof><rights>Copyright Japan Science and Technology Agency 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>YAMAMOTO, Toshihisa</creatorcontrib><creatorcontrib>TAKEDA, Toshikazu</creatorcontrib><title>Subgroup Parameters based on Orthogonal Factorization</title><title>Journal of nuclear science and technology</title><description>A new methodology to produce subgroup parameters has been developed based on orthogonal factorization of weighting functions. In the existent methods the weighting functions do not appear explicitly, which causes the inconvenience in producing subgroup parameters in some situations. In the present method, the weighting functions are tailored to the required conditions by the use of orthonormal factorization method of which mathematical background is based on the Lanczos method. The obtained weighting functions can be commonly used for any physical quantities in order to produce corresponding subgroup parameters. The superiority of this approach becomes eminent especially when multiple conditions are specified at the same time.The numerical results of two simple examples have revealed the potential of the applicability of the present method to general problems. We have concluded that the present method may be developed into an efficient tool to deal with wide variety of problems using subgroup-method-related methodology.</description><issn>0022-3131</issn><issn>1881-1248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjkFLwzAYQIMoOKcXf0HBc2u-70u65CjDOWEwQT2Pr20yV2ZTk_Tir3eip8e7PJ4QtyArIlzc90PKlVIV1WdiBsZACajMuZhJiVgSEFyKq5T6k9aqNjOhX6dmH8M0Fi8c-dNlF1PRcHJdEYZiG_NH2IeBj8WK2xzi4ZvzIQzX4sLzMbmbf87F--rxbbkuN9un5-XDphwBKJdktPedlgQKpUFqlaeF9wa1Amdb68A1DdZoLStNyA1jx7UyHjpnTQs0F3d_3TGGr8mlvOvDFE87afebRARtJf0A05NGwQ</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>YAMAMOTO, Toshihisa</creator><creator>TAKEDA, Toshikazu</creator><general>Taylor &amp; Francis Ltd</general><scope/></search><sort><creationdate>20070101</creationdate><title>Subgroup Parameters based on Orthogonal Factorization</title><author>YAMAMOTO, Toshihisa ; TAKEDA, Toshikazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-385ffd5031420823c4f37ff82541e9c9e1ebb26299a4532aba2da648f1de98c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YAMAMOTO, Toshihisa</creatorcontrib><creatorcontrib>TAKEDA, Toshikazu</creatorcontrib><jtitle>Journal of nuclear science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YAMAMOTO, Toshihisa</au><au>TAKEDA, Toshikazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subgroup Parameters based on Orthogonal Factorization</atitle><jtitle>Journal of nuclear science and technology</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>44</volume><issue>1</issue><spage>36</spage><pages>36-</pages><issn>0022-3131</issn><eissn>1881-1248</eissn><abstract>A new methodology to produce subgroup parameters has been developed based on orthogonal factorization of weighting functions. In the existent methods the weighting functions do not appear explicitly, which causes the inconvenience in producing subgroup parameters in some situations. In the present method, the weighting functions are tailored to the required conditions by the use of orthonormal factorization method of which mathematical background is based on the Lanczos method. The obtained weighting functions can be commonly used for any physical quantities in order to produce corresponding subgroup parameters. The superiority of this approach becomes eminent especially when multiple conditions are specified at the same time.The numerical results of two simple examples have revealed the potential of the applicability of the present method to general problems. We have concluded that the present method may be developed into an efficient tool to deal with wide variety of problems using subgroup-method-related methodology.</abstract><cop>Tokyo</cop><pub>Taylor &amp; Francis Ltd</pub><doi>10.3327/jnst.44.36</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-3131
ispartof Journal of nuclear science and technology, 2007-01, Vol.44 (1), p.36
issn 0022-3131
1881-1248
language eng
recordid cdi_proquest_journals_1420221590
source Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
title Subgroup Parameters based on Orthogonal Factorization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subgroup%20Parameters%20based%20on%20Orthogonal%20Factorization&rft.jtitle=Journal%20of%20nuclear%20science%20and%20technology&rft.au=YAMAMOTO,%20Toshihisa&rft.date=2007-01-01&rft.volume=44&rft.issue=1&rft.spage=36&rft.pages=36-&rft.issn=0022-3131&rft.eissn=1881-1248&rft_id=info:doi/10.3327/jnst.44.36&rft_dat=%3Cproquest%3E3044277781%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1420221590&rft_id=info:pmid/&rfr_iscdi=true