Joint Optimization for Object Class Segmentation and Dense Stereo Reconstruction

The problems of dense stereo reconstruction and object class segmentation can both be formulated as Random Field labeling problems, in which every pixel in the image is assigned a label corresponding to either its disparity, or an object class such as road or building. While these two problems are m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision 2012-11, Vol.100 (2), p.122-133
Hauptverfasser: Ladický, Lubor, Sturgess, Paul, Russell, Chris, Sengupta, Sunando, Bastanlar, Yalin, Clocksin, William, Torr, Philip H. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 2
container_start_page 122
container_title International journal of computer vision
container_volume 100
creator Ladický, Lubor
Sturgess, Paul
Russell, Chris
Sengupta, Sunando
Bastanlar, Yalin
Clocksin, William
Torr, Philip H. S.
description The problems of dense stereo reconstruction and object class segmentation can both be formulated as Random Field labeling problems, in which every pixel in the image is assigned a label corresponding to either its disparity, or an object class such as road or building. While these two problems are mutually informative, no attempt has been made to jointly optimize their labelings. In this work we provide a flexible framework configured via cross-validation that unifies the two problems and demonstrate that, by resolving ambiguities, which would be present in real world data if the two problems were considered separately, joint optimization of the two problems substantially improves performance. To evaluate our method, we augment the Leuven data set ( http://cms.brookes.ac.uk/research/visiongroup/files/Leuven.zip ), which is a stereo video shot from a car driving around the streets of Leuven, with 70 hand labeled object class and disparity maps. We hope that the release of these annotations will stimulate further work in the challenging domain of street-view analysis. Complete source code is publicly available ( http://cms.brookes.ac.uk/staff/Philip-Torr/ale.htm ).
doi_str_mv 10.1007/s11263-011-0489-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1419826130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A378558159</galeid><sourcerecordid>A378558159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-6a7d91465ddeb2f7b9b59c425f57a69f2af3149c6597b1f77571675c2115956c3</originalsourceid><addsrcrecordid>eNp1kU9rGzEQxUVJoE7SD9DbQk89bKrRrqTV0Thp_hBwsZOz0GpHZo0tuZIMST99ZbaH5hDmMDDzezMPHiFfgV4DpfJHAmCiqSlATdtO1fQTmQGXTQ0t5WdkRhWjNRcKPpOLlLaUUtaxZkZ-PYbR52p5yON-_GPyGHzlQqyW_RZtrhY7k1K1xs0efZ62xg_VDfqE1TpjxFCt0Aafcjza0_6KnDuzS_jlX78kLz9vnxf39dPy7mExf6ptq7pcCyMHBa3gw4A9c7JXPVe2ZdxxaYRyzLgGWmUFV7IHJyWXICS3DIArLmxzSb5Ndw8x_D5iynobjtGXlxpaUB0T0NBCXU_UxuxQj96FHI0tNeB-LLbRjWU-b2THeVcuF8H3d4LCZHzNG3NMST-sV-9ZmFgbQ0oRnT7EcW_imwaqT6noKRVdUtGnVPTJEJs0qbB-g_E_2x-K_gKpHI1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1419826130</pqid></control><display><type>article</type><title>Joint Optimization for Object Class Segmentation and Dense Stereo Reconstruction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ladický, Lubor ; Sturgess, Paul ; Russell, Chris ; Sengupta, Sunando ; Bastanlar, Yalin ; Clocksin, William ; Torr, Philip H. S.</creator><creatorcontrib>Ladický, Lubor ; Sturgess, Paul ; Russell, Chris ; Sengupta, Sunando ; Bastanlar, Yalin ; Clocksin, William ; Torr, Philip H. S.</creatorcontrib><description>The problems of dense stereo reconstruction and object class segmentation can both be formulated as Random Field labeling problems, in which every pixel in the image is assigned a label corresponding to either its disparity, or an object class such as road or building. While these two problems are mutually informative, no attempt has been made to jointly optimize their labelings. In this work we provide a flexible framework configured via cross-validation that unifies the two problems and demonstrate that, by resolving ambiguities, which would be present in real world data if the two problems were considered separately, joint optimization of the two problems substantially improves performance. To evaluate our method, we augment the Leuven data set ( http://cms.brookes.ac.uk/research/visiongroup/files/Leuven.zip ), which is a stereo video shot from a car driving around the streets of Leuven, with 70 hand labeled object class and disparity maps. We hope that the release of these annotations will stimulate further work in the challenging domain of street-view analysis. Complete source code is publicly available ( http://cms.brookes.ac.uk/staff/Philip-Torr/ale.htm ).</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-011-0489-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Cameras ; Computer Imaging ; Computer Science ; Datasets ; Image Processing and Computer Vision ; International ; Labeling ; Optimization ; Pattern Recognition ; Pattern Recognition and Graphics ; Studies ; Vision ; Vision systems</subject><ispartof>International journal of computer vision, 2012-11, Vol.100 (2), p.122-133</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-6a7d91465ddeb2f7b9b59c425f57a69f2af3149c6597b1f77571675c2115956c3</citedby><cites>FETCH-LOGICAL-c498t-6a7d91465ddeb2f7b9b59c425f57a69f2af3149c6597b1f77571675c2115956c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11263-011-0489-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11263-011-0489-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ladický, Lubor</creatorcontrib><creatorcontrib>Sturgess, Paul</creatorcontrib><creatorcontrib>Russell, Chris</creatorcontrib><creatorcontrib>Sengupta, Sunando</creatorcontrib><creatorcontrib>Bastanlar, Yalin</creatorcontrib><creatorcontrib>Clocksin, William</creatorcontrib><creatorcontrib>Torr, Philip H. S.</creatorcontrib><title>Joint Optimization for Object Class Segmentation and Dense Stereo Reconstruction</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>The problems of dense stereo reconstruction and object class segmentation can both be formulated as Random Field labeling problems, in which every pixel in the image is assigned a label corresponding to either its disparity, or an object class such as road or building. While these two problems are mutually informative, no attempt has been made to jointly optimize their labelings. In this work we provide a flexible framework configured via cross-validation that unifies the two problems and demonstrate that, by resolving ambiguities, which would be present in real world data if the two problems were considered separately, joint optimization of the two problems substantially improves performance. To evaluate our method, we augment the Leuven data set ( http://cms.brookes.ac.uk/research/visiongroup/files/Leuven.zip ), which is a stereo video shot from a car driving around the streets of Leuven, with 70 hand labeled object class and disparity maps. We hope that the release of these annotations will stimulate further work in the challenging domain of street-view analysis. Complete source code is publicly available ( http://cms.brookes.ac.uk/staff/Philip-Torr/ale.htm ).</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Cameras</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Image Processing and Computer Vision</subject><subject>International</subject><subject>Labeling</subject><subject>Optimization</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Studies</subject><subject>Vision</subject><subject>Vision systems</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU9rGzEQxUVJoE7SD9DbQk89bKrRrqTV0Thp_hBwsZOz0GpHZo0tuZIMST99ZbaH5hDmMDDzezMPHiFfgV4DpfJHAmCiqSlATdtO1fQTmQGXTQ0t5WdkRhWjNRcKPpOLlLaUUtaxZkZ-PYbR52p5yON-_GPyGHzlQqyW_RZtrhY7k1K1xs0efZ62xg_VDfqE1TpjxFCt0Aafcjza0_6KnDuzS_jlX78kLz9vnxf39dPy7mExf6ptq7pcCyMHBa3gw4A9c7JXPVe2ZdxxaYRyzLgGWmUFV7IHJyWXICS3DIArLmxzSb5Ndw8x_D5iynobjtGXlxpaUB0T0NBCXU_UxuxQj96FHI0tNeB-LLbRjWU-b2THeVcuF8H3d4LCZHzNG3NMST-sV-9ZmFgbQ0oRnT7EcW_imwaqT6noKRVdUtGnVPTJEJs0qbB-g_E_2x-K_gKpHI1k</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Ladický, Lubor</creator><creator>Sturgess, Paul</creator><creator>Russell, Chris</creator><creator>Sengupta, Sunando</creator><creator>Bastanlar, Yalin</creator><creator>Clocksin, William</creator><creator>Torr, Philip H. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20121101</creationdate><title>Joint Optimization for Object Class Segmentation and Dense Stereo Reconstruction</title><author>Ladický, Lubor ; Sturgess, Paul ; Russell, Chris ; Sengupta, Sunando ; Bastanlar, Yalin ; Clocksin, William ; Torr, Philip H. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-6a7d91465ddeb2f7b9b59c425f57a69f2af3149c6597b1f77571675c2115956c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Cameras</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Image Processing and Computer Vision</topic><topic>International</topic><topic>Labeling</topic><topic>Optimization</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Studies</topic><topic>Vision</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ladický, Lubor</creatorcontrib><creatorcontrib>Sturgess, Paul</creatorcontrib><creatorcontrib>Russell, Chris</creatorcontrib><creatorcontrib>Sengupta, Sunando</creatorcontrib><creatorcontrib>Bastanlar, Yalin</creatorcontrib><creatorcontrib>Clocksin, William</creatorcontrib><creatorcontrib>Torr, Philip H. S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ladický, Lubor</au><au>Sturgess, Paul</au><au>Russell, Chris</au><au>Sengupta, Sunando</au><au>Bastanlar, Yalin</au><au>Clocksin, William</au><au>Torr, Philip H. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Optimization for Object Class Segmentation and Dense Stereo Reconstruction</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>100</volume><issue>2</issue><spage>122</spage><epage>133</epage><pages>122-133</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>The problems of dense stereo reconstruction and object class segmentation can both be formulated as Random Field labeling problems, in which every pixel in the image is assigned a label corresponding to either its disparity, or an object class such as road or building. While these two problems are mutually informative, no attempt has been made to jointly optimize their labelings. In this work we provide a flexible framework configured via cross-validation that unifies the two problems and demonstrate that, by resolving ambiguities, which would be present in real world data if the two problems were considered separately, joint optimization of the two problems substantially improves performance. To evaluate our method, we augment the Leuven data set ( http://cms.brookes.ac.uk/research/visiongroup/files/Leuven.zip ), which is a stereo video shot from a car driving around the streets of Leuven, with 70 hand labeled object class and disparity maps. We hope that the release of these annotations will stimulate further work in the challenging domain of street-view analysis. Complete source code is publicly available ( http://cms.brookes.ac.uk/staff/Philip-Torr/ale.htm ).</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11263-011-0489-0</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-5691
ispartof International journal of computer vision, 2012-11, Vol.100 (2), p.122-133
issn 0920-5691
1573-1405
language eng
recordid cdi_proquest_journals_1419826130
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Cameras
Computer Imaging
Computer Science
Datasets
Image Processing and Computer Vision
International
Labeling
Optimization
Pattern Recognition
Pattern Recognition and Graphics
Studies
Vision
Vision systems
title Joint Optimization for Object Class Segmentation and Dense Stereo Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Optimization%20for%20Object%20Class%20Segmentation%20and%20Dense%20Stereo%20Reconstruction&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Ladick%C3%BD,%20Lubor&rft.date=2012-11-01&rft.volume=100&rft.issue=2&rft.spage=122&rft.epage=133&rft.pages=122-133&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-011-0489-0&rft_dat=%3Cgale_proqu%3EA378558159%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1419826130&rft_id=info:pmid/&rft_galeid=A378558159&rfr_iscdi=true