On the Mathematics of Income Inequality: Splitting the Gini Index in Two

Income distribution is described by a two-parameter model for the Lorenz curve. This model interpolates between self-similar behavior at the low and high ends of the income spectrum, and naturally leads to two separate indices describing both ends individually. These new indices accurately capture r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 2012-12, Vol.119 (10), p.824-837
Hauptverfasser: Jantzen, Robert T, Volpert, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 837
container_issue 10
container_start_page 824
container_title The American mathematical monthly
container_volume 119
creator Jantzen, Robert T
Volpert, Klaus
description Income distribution is described by a two-parameter model for the Lorenz curve. This model interpolates between self-similar behavior at the low and high ends of the income spectrum, and naturally leads to two separate indices describing both ends individually. These new indices accurately capture realistic data on income distribution, and give a better picture of how income data is shifting over time.
doi_str_mv 10.4169/amer.math.monthly.119.10.824
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1417591376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.4169/amer.math.monthly.119.10.824</jstor_id><sourcerecordid>10.4169/amer.math.monthly.119.10.824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-91b1bfe49080a300224b39453e3b81dce0c7b5294af284a5a35fb8229b1eaaea3</originalsourceid><addsrcrecordid>eNqVkMtOAjEYhRujiYi-QxPdztgrMzVuDFEgwbAQ1007dKSEaaEtUd7ejvACrk6ac-mfD4AHjEqGR-JRdSaUnUrrsvMurbfHEmNRZrcm7AIMsKCoQKIil2CAECKFqAW6BjcxbvITcUYGYLpwMK0NfM8rJk_ZJkLfwplrfGeymP1BbW06PsGPXdZk3ddffmKdzfbK_EDr4PLb34KrVm2juTvrEHy-vS7H02K-mMzGL_OioYynQmCNdWuYQDVSNB9FmKaCcWqorvGqMaipNCeCqZbUTHFFeatrQoTGRimj6BDcn3Z3we8PJia58Yfg8pcSM1xxgWk1yqnnU6oJPsZgWrkLtlPhKDGSPTvZs5M9O3lmJzO73s3scl2c6puYfPhf9xec7Htr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417591376</pqid></control><display><type>article</type><title>On the Mathematics of Income Inequality: Splitting the Gini Index in Two</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Jantzen, Robert T ; Volpert, Klaus</creator><creatorcontrib>Jantzen, Robert T ; Volpert, Klaus</creatorcontrib><description>Income distribution is described by a two-parameter model for the Lorenz curve. This model interpolates between self-similar behavior at the low and high ends of the income spectrum, and naturally leads to two separate indices describing both ends individually. These new indices accurately capture realistic data on income distribution, and give a better picture of how income data is shifting over time.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.4169/amer.math.monthly.119.10.824</identifier><identifier>CODEN: AMMYAE</identifier><language>eng</language><publisher>Washington: Mathematical Association of America</publisher><subject>Censuses ; Gini index ; Income distribution ; Income inequality ; Income shares ; Lorenz Curve ; Mathematical functions ; Mathematical inequalities ; Mathematics ; Power laws ; Statistics</subject><ispartof>The American mathematical monthly, 2012-12, Vol.119 (10), p.824-837</ispartof><rights>Copyright the Mathematical Association of America 2012</rights><rights>Copyright Mathematical Association Of America Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-91b1bfe49080a300224b39453e3b81dce0c7b5294af284a5a35fb8229b1eaaea3</citedby><cites>FETCH-LOGICAL-c345t-91b1bfe49080a300224b39453e3b81dce0c7b5294af284a5a35fb8229b1eaaea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,799,828,27901,27902</link.rule.ids></links><search><creatorcontrib>Jantzen, Robert T</creatorcontrib><creatorcontrib>Volpert, Klaus</creatorcontrib><title>On the Mathematics of Income Inequality: Splitting the Gini Index in Two</title><title>The American mathematical monthly</title><description>Income distribution is described by a two-parameter model for the Lorenz curve. This model interpolates between self-similar behavior at the low and high ends of the income spectrum, and naturally leads to two separate indices describing both ends individually. These new indices accurately capture realistic data on income distribution, and give a better picture of how income data is shifting over time.</description><subject>Censuses</subject><subject>Gini index</subject><subject>Income distribution</subject><subject>Income inequality</subject><subject>Income shares</subject><subject>Lorenz Curve</subject><subject>Mathematical functions</subject><subject>Mathematical inequalities</subject><subject>Mathematics</subject><subject>Power laws</subject><subject>Statistics</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqVkMtOAjEYhRujiYi-QxPdztgrMzVuDFEgwbAQ1007dKSEaaEtUd7ejvACrk6ac-mfD4AHjEqGR-JRdSaUnUrrsvMurbfHEmNRZrcm7AIMsKCoQKIil2CAECKFqAW6BjcxbvITcUYGYLpwMK0NfM8rJk_ZJkLfwplrfGeymP1BbW06PsGPXdZk3ddffmKdzfbK_EDr4PLb34KrVm2juTvrEHy-vS7H02K-mMzGL_OioYynQmCNdWuYQDVSNB9FmKaCcWqorvGqMaipNCeCqZbUTHFFeatrQoTGRimj6BDcn3Z3we8PJia58Yfg8pcSM1xxgWk1yqnnU6oJPsZgWrkLtlPhKDGSPTvZs5M9O3lmJzO73s3scl2c6puYfPhf9xec7Htr</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Jantzen, Robert T</creator><creator>Volpert, Klaus</creator><general>Mathematical Association of America</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20121201</creationdate><title>On the Mathematics of Income Inequality: Splitting the Gini Index in Two</title><author>Jantzen, Robert T ; Volpert, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-91b1bfe49080a300224b39453e3b81dce0c7b5294af284a5a35fb8229b1eaaea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Censuses</topic><topic>Gini index</topic><topic>Income distribution</topic><topic>Income inequality</topic><topic>Income shares</topic><topic>Lorenz Curve</topic><topic>Mathematical functions</topic><topic>Mathematical inequalities</topic><topic>Mathematics</topic><topic>Power laws</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jantzen, Robert T</creatorcontrib><creatorcontrib>Volpert, Klaus</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jantzen, Robert T</au><au>Volpert, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Mathematics of Income Inequality: Splitting the Gini Index in Two</atitle><jtitle>The American mathematical monthly</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>119</volume><issue>10</issue><spage>824</spage><epage>837</epage><pages>824-837</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><coden>AMMYAE</coden><abstract>Income distribution is described by a two-parameter model for the Lorenz curve. This model interpolates between self-similar behavior at the low and high ends of the income spectrum, and naturally leads to two separate indices describing both ends individually. These new indices accurately capture realistic data on income distribution, and give a better picture of how income data is shifting over time.</abstract><cop>Washington</cop><pub>Mathematical Association of America</pub><doi>10.4169/amer.math.monthly.119.10.824</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9890
ispartof The American mathematical monthly, 2012-12, Vol.119 (10), p.824-837
issn 0002-9890
1930-0972
language eng
recordid cdi_proquest_journals_1417591376
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; JSTOR Mathematics & Statistics
subjects Censuses
Gini index
Income distribution
Income inequality
Income shares
Lorenz Curve
Mathematical functions
Mathematical inequalities
Mathematics
Power laws
Statistics
title On the Mathematics of Income Inequality: Splitting the Gini Index in Two
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Mathematics%20of%20Income%20Inequality:%20Splitting%20the%20Gini%20Index%20in%20Two&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Jantzen,%20Robert%20T&rft.date=2012-12-01&rft.volume=119&rft.issue=10&rft.spage=824&rft.epage=837&rft.pages=824-837&rft.issn=0002-9890&rft.eissn=1930-0972&rft.coden=AMMYAE&rft_id=info:doi/10.4169/amer.math.monthly.119.10.824&rft_dat=%3Cjstor_proqu%3E10.4169/amer.math.monthly.119.10.824%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1417591376&rft_id=info:pmid/&rft_jstor_id=10.4169/amer.math.monthly.119.10.824&rfr_iscdi=true