On the Mathematics of Income Inequality: Splitting the Gini Index in Two
Income distribution is described by a two-parameter model for the Lorenz curve. This model interpolates between self-similar behavior at the low and high ends of the income spectrum, and naturally leads to two separate indices describing both ends individually. These new indices accurately capture r...
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2012-12, Vol.119 (10), p.824-837 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 837 |
---|---|
container_issue | 10 |
container_start_page | 824 |
container_title | The American mathematical monthly |
container_volume | 119 |
creator | Jantzen, Robert T Volpert, Klaus |
description | Income distribution is described by a two-parameter model for the Lorenz curve. This model interpolates between self-similar behavior at the low and high ends of the income spectrum, and naturally leads to two separate indices describing both ends individually. These new indices accurately capture realistic data on income distribution, and give a better picture of how income data is shifting over time. |
doi_str_mv | 10.4169/amer.math.monthly.119.10.824 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1417591376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.4169/amer.math.monthly.119.10.824</jstor_id><sourcerecordid>10.4169/amer.math.monthly.119.10.824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-91b1bfe49080a300224b39453e3b81dce0c7b5294af284a5a35fb8229b1eaaea3</originalsourceid><addsrcrecordid>eNqVkMtOAjEYhRujiYi-QxPdztgrMzVuDFEgwbAQ1007dKSEaaEtUd7ejvACrk6ac-mfD4AHjEqGR-JRdSaUnUrrsvMurbfHEmNRZrcm7AIMsKCoQKIil2CAECKFqAW6BjcxbvITcUYGYLpwMK0NfM8rJk_ZJkLfwplrfGeymP1BbW06PsGPXdZk3ddffmKdzfbK_EDr4PLb34KrVm2juTvrEHy-vS7H02K-mMzGL_OioYynQmCNdWuYQDVSNB9FmKaCcWqorvGqMaipNCeCqZbUTHFFeatrQoTGRimj6BDcn3Z3we8PJia58Yfg8pcSM1xxgWk1yqnnU6oJPsZgWrkLtlPhKDGSPTvZs5M9O3lmJzO73s3scl2c6puYfPhf9xec7Htr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417591376</pqid></control><display><type>article</type><title>On the Mathematics of Income Inequality: Splitting the Gini Index in Two</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics & Statistics</source><creator>Jantzen, Robert T ; Volpert, Klaus</creator><creatorcontrib>Jantzen, Robert T ; Volpert, Klaus</creatorcontrib><description>Income distribution is described by a two-parameter model for the Lorenz curve. This model interpolates between self-similar behavior at the low and high ends of the income spectrum, and naturally leads to two separate indices describing both ends individually. These new indices accurately capture realistic data on income distribution, and give a better picture of how income data is shifting over time.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.4169/amer.math.monthly.119.10.824</identifier><identifier>CODEN: AMMYAE</identifier><language>eng</language><publisher>Washington: Mathematical Association of America</publisher><subject>Censuses ; Gini index ; Income distribution ; Income inequality ; Income shares ; Lorenz Curve ; Mathematical functions ; Mathematical inequalities ; Mathematics ; Power laws ; Statistics</subject><ispartof>The American mathematical monthly, 2012-12, Vol.119 (10), p.824-837</ispartof><rights>Copyright the Mathematical Association of America 2012</rights><rights>Copyright Mathematical Association Of America Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-91b1bfe49080a300224b39453e3b81dce0c7b5294af284a5a35fb8229b1eaaea3</citedby><cites>FETCH-LOGICAL-c345t-91b1bfe49080a300224b39453e3b81dce0c7b5294af284a5a35fb8229b1eaaea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,799,828,27901,27902</link.rule.ids></links><search><creatorcontrib>Jantzen, Robert T</creatorcontrib><creatorcontrib>Volpert, Klaus</creatorcontrib><title>On the Mathematics of Income Inequality: Splitting the Gini Index in Two</title><title>The American mathematical monthly</title><description>Income distribution is described by a two-parameter model for the Lorenz curve. This model interpolates between self-similar behavior at the low and high ends of the income spectrum, and naturally leads to two separate indices describing both ends individually. These new indices accurately capture realistic data on income distribution, and give a better picture of how income data is shifting over time.</description><subject>Censuses</subject><subject>Gini index</subject><subject>Income distribution</subject><subject>Income inequality</subject><subject>Income shares</subject><subject>Lorenz Curve</subject><subject>Mathematical functions</subject><subject>Mathematical inequalities</subject><subject>Mathematics</subject><subject>Power laws</subject><subject>Statistics</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqVkMtOAjEYhRujiYi-QxPdztgrMzVuDFEgwbAQ1007dKSEaaEtUd7ejvACrk6ac-mfD4AHjEqGR-JRdSaUnUrrsvMurbfHEmNRZrcm7AIMsKCoQKIil2CAECKFqAW6BjcxbvITcUYGYLpwMK0NfM8rJk_ZJkLfwplrfGeymP1BbW06PsGPXdZk3ddffmKdzfbK_EDr4PLb34KrVm2juTvrEHy-vS7H02K-mMzGL_OioYynQmCNdWuYQDVSNB9FmKaCcWqorvGqMaipNCeCqZbUTHFFeatrQoTGRimj6BDcn3Z3we8PJia58Yfg8pcSM1xxgWk1yqnnU6oJPsZgWrkLtlPhKDGSPTvZs5M9O3lmJzO73s3scl2c6puYfPhf9xec7Htr</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Jantzen, Robert T</creator><creator>Volpert, Klaus</creator><general>Mathematical Association of America</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20121201</creationdate><title>On the Mathematics of Income Inequality: Splitting the Gini Index in Two</title><author>Jantzen, Robert T ; Volpert, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-91b1bfe49080a300224b39453e3b81dce0c7b5294af284a5a35fb8229b1eaaea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Censuses</topic><topic>Gini index</topic><topic>Income distribution</topic><topic>Income inequality</topic><topic>Income shares</topic><topic>Lorenz Curve</topic><topic>Mathematical functions</topic><topic>Mathematical inequalities</topic><topic>Mathematics</topic><topic>Power laws</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jantzen, Robert T</creatorcontrib><creatorcontrib>Volpert, Klaus</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jantzen, Robert T</au><au>Volpert, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Mathematics of Income Inequality: Splitting the Gini Index in Two</atitle><jtitle>The American mathematical monthly</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>119</volume><issue>10</issue><spage>824</spage><epage>837</epage><pages>824-837</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><coden>AMMYAE</coden><abstract>Income distribution is described by a two-parameter model for the Lorenz curve. This model interpolates between self-similar behavior at the low and high ends of the income spectrum, and naturally leads to two separate indices describing both ends individually. These new indices accurately capture realistic data on income distribution, and give a better picture of how income data is shifting over time.</abstract><cop>Washington</cop><pub>Mathematical Association of America</pub><doi>10.4169/amer.math.monthly.119.10.824</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9890 |
ispartof | The American mathematical monthly, 2012-12, Vol.119 (10), p.824-837 |
issn | 0002-9890 1930-0972 |
language | eng |
recordid | cdi_proquest_journals_1417591376 |
source | Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; JSTOR Mathematics & Statistics |
subjects | Censuses Gini index Income distribution Income inequality Income shares Lorenz Curve Mathematical functions Mathematical inequalities Mathematics Power laws Statistics |
title | On the Mathematics of Income Inequality: Splitting the Gini Index in Two |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Mathematics%20of%20Income%20Inequality:%20Splitting%20the%20Gini%20Index%20in%20Two&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Jantzen,%20Robert%20T&rft.date=2012-12-01&rft.volume=119&rft.issue=10&rft.spage=824&rft.epage=837&rft.pages=824-837&rft.issn=0002-9890&rft.eissn=1930-0972&rft.coden=AMMYAE&rft_id=info:doi/10.4169/amer.math.monthly.119.10.824&rft_dat=%3Cjstor_proqu%3E10.4169/amer.math.monthly.119.10.824%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1417591376&rft_id=info:pmid/&rft_jstor_id=10.4169/amer.math.monthly.119.10.824&rfr_iscdi=true |