On Moessner’s Theorem
Moessner’s theoremdescribes a procedure for generating a sequence ofninteger sequences that lead unexpectedly to the sequence ofnth powers 1 n , 2 n , 3 n , …Paasche’s theoremis a generalization of Moessner’s; by varying the parameters of the procedure, we can obtain the sequence of factorials 1!, 2...
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2013-02, Vol.120 (2), p.131-139 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Moessner’s theoremdescribes a procedure for generating a sequence ofninteger sequences that lead unexpectedly to the sequence ofnth powers 1
n
, 2
n
, 3
n
, …Paasche’s theoremis a generalization of Moessner’s; by varying the parameters of the procedure, we can obtain the sequence of factorials 1!, 2!, 3!, … or the sequence of superfactorials 1!, 2! 1!, 3! 2! 1!, … Long’s theorem generalizes Moessner’s in another direction, providing a procedure to generate the sequencea· 1
n−1, (a+d) · 2
n−1, (a+ 2d) · 3
n−1, …. Proofs of these results in the literature are typically based on combinatorics of binomial coefficients or calculational scans. In this note, we give a short and revealing algebraic proof of a general theorem that contains Moessner’s, Paasche’s, and Long’s as special cases. We also prove a generalization that gives new Moessner-type theorems. |
---|---|
ISSN: | 0002-9890 1930-0972 |
DOI: | 10.4169/amer.math.monthly.120.02.131 |