Rate Gain Region and Design Tradeoffs for Full-Duplex Wireless Communications

In this paper, we analytically study the regime in which practical full-duplex systems can achieve larger rates than an equivalent half-duplex systems. The key challenge in practical full-duplex systems is uncancelled self-interference signal, which is caused by a combination of hardware and impleme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2013-07, Vol.12 (7), p.3556-3565
Hauptverfasser: Ahmed, E., Eltawil, A. M., Sabharwal, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3565
container_issue 7
container_start_page 3556
container_title IEEE transactions on wireless communications
container_volume 12
creator Ahmed, E.
Eltawil, A. M.
Sabharwal, A.
description In this paper, we analytically study the regime in which practical full-duplex systems can achieve larger rates than an equivalent half-duplex systems. The key challenge in practical full-duplex systems is uncancelled self-interference signal, which is caused by a combination of hardware and implementation imperfections. Thus, we first present a signal model which captures the effect of significant impairments such as oscillator phase noise, low-noise amplifier noise figure, mixer noise, and analog-to-digital converter quantization noise. Using the detailed signal model, we study the rate gain region, which is defined as the region of received signal-of-interest strength where full-duplex systems outperform half-duplex systems in terms of achievable rate. The rate gain region is derived as a piecewise linear approximation in log-domain, and numerical results show that the approximation closely matches the exact region. Our analysis shows that when phase noise dominates mixer and quantization noise, full-duplex systems can use either active analog cancellation or baseband digital cancellation to achieve near-identical rate gain regions. Finally, as a design example, we numerically investigate the full-duplex system performance and rate gain region in typical indoor environments for practical wireless applications.
doi_str_mv 10.1109/TWC.2013.060413.121871
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1417141609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6542771</ieee_id><sourcerecordid>3035287261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-18daf3ca328d0db6347f9ee09acacd43c4274cc423b038a13d031b12e36433653</originalsourceid><addsrcrecordid>eNpdkNFKwzAUhosoOKdPIEhABG86c5I0bS5lc1OYCGOyy5ClpyOja2eygr69GR1eeJGcQL7_J_mS5A7oCICqp-VqPGIU-IhKKuIABkUOZ8kAsqxIGRPF-fHMZQosl5fJVQhbSiGXWTZI3hfmgGRmXEMWuHFtQ0xTkgkGt2nI0psS26oKpGo9mXZ1nU66fY3fZOU81hgCGbe7Xdc4aw4xG66Ti8rUAW9Oc5h8Tl-W49d0_jF7Gz_PUysKekihKE3FreGsKGm5llzklUKkylhjS8GtYLmwcedrygsDvKQc1sCQS8G5zPgweex797796jAc9M4Fi3VtGmy7oEEwpWJUyYje_0O3beeb-LpIQR6XpCpSsqesb0PwWOm9dzvjfzRQfbSso2V9tKx7y7q3HIMPp3oTrKkrbxrrwl-a5ZlSionI3facQ8S_a5nFn8aWX7VRhC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417141609</pqid></control><display><type>article</type><title>Rate Gain Region and Design Tradeoffs for Full-Duplex Wireless Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Ahmed, E. ; Eltawil, A. M. ; Sabharwal, A.</creator><creatorcontrib>Ahmed, E. ; Eltawil, A. M. ; Sabharwal, A.</creatorcontrib><description>In this paper, we analytically study the regime in which practical full-duplex systems can achieve larger rates than an equivalent half-duplex systems. The key challenge in practical full-duplex systems is uncancelled self-interference signal, which is caused by a combination of hardware and implementation imperfections. Thus, we first present a signal model which captures the effect of significant impairments such as oscillator phase noise, low-noise amplifier noise figure, mixer noise, and analog-to-digital converter quantization noise. Using the detailed signal model, we study the rate gain region, which is defined as the region of received signal-of-interest strength where full-duplex systems outperform half-duplex systems in terms of achievable rate. The rate gain region is derived as a piecewise linear approximation in log-domain, and numerical results show that the approximation closely matches the exact region. Our analysis shows that when phase noise dominates mixer and quantization noise, full-duplex systems can use either active analog cancellation or baseband digital cancellation to achieve near-identical rate gain regions. Finally, as a design example, we numerically investigate the full-duplex system performance and rate gain region in typical indoor environments for practical wireless applications.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2013.060413.121871</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplification ; analog self-interference cancellation ; Applied sciences ; Barium ; Cancellation ; Detection, estimation, filtering, equalization, prediction ; digital self-interference cancellation ; Exact sciences and technology ; Full-duplex ; Gain ; Information, signal and communications theory ; Mathematical analysis ; Mathematical model ; Mixers ; Noise ; Phase noise ; Product introduction ; Quantization ; Quantization (signal) ; radio impairments ; rate gain ; Receivers ; Signal and communications theory ; Signal to noise ratio ; Signal, noise ; Studies ; Telecommunications and information theory ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2013-07, Vol.12 (7), p.3556-3565</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-18daf3ca328d0db6347f9ee09acacd43c4274cc423b038a13d031b12e36433653</citedby><cites>FETCH-LOGICAL-c480t-18daf3ca328d0db6347f9ee09acacd43c4274cc423b038a13d031b12e36433653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6542771$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6542771$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27599924$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, E.</creatorcontrib><creatorcontrib>Eltawil, A. M.</creatorcontrib><creatorcontrib>Sabharwal, A.</creatorcontrib><title>Rate Gain Region and Design Tradeoffs for Full-Duplex Wireless Communications</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>In this paper, we analytically study the regime in which practical full-duplex systems can achieve larger rates than an equivalent half-duplex systems. The key challenge in practical full-duplex systems is uncancelled self-interference signal, which is caused by a combination of hardware and implementation imperfections. Thus, we first present a signal model which captures the effect of significant impairments such as oscillator phase noise, low-noise amplifier noise figure, mixer noise, and analog-to-digital converter quantization noise. Using the detailed signal model, we study the rate gain region, which is defined as the region of received signal-of-interest strength where full-duplex systems outperform half-duplex systems in terms of achievable rate. The rate gain region is derived as a piecewise linear approximation in log-domain, and numerical results show that the approximation closely matches the exact region. Our analysis shows that when phase noise dominates mixer and quantization noise, full-duplex systems can use either active analog cancellation or baseband digital cancellation to achieve near-identical rate gain regions. Finally, as a design example, we numerically investigate the full-duplex system performance and rate gain region in typical indoor environments for practical wireless applications.</description><subject>Amplification</subject><subject>analog self-interference cancellation</subject><subject>Applied sciences</subject><subject>Barium</subject><subject>Cancellation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>digital self-interference cancellation</subject><subject>Exact sciences and technology</subject><subject>Full-duplex</subject><subject>Gain</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mixers</subject><subject>Noise</subject><subject>Phase noise</subject><subject>Product introduction</subject><subject>Quantization</subject><subject>Quantization (signal)</subject><subject>radio impairments</subject><subject>rate gain</subject><subject>Receivers</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkNFKwzAUhosoOKdPIEhABG86c5I0bS5lc1OYCGOyy5ClpyOja2eygr69GR1eeJGcQL7_J_mS5A7oCICqp-VqPGIU-IhKKuIABkUOZ8kAsqxIGRPF-fHMZQosl5fJVQhbSiGXWTZI3hfmgGRmXEMWuHFtQ0xTkgkGt2nI0psS26oKpGo9mXZ1nU66fY3fZOU81hgCGbe7Xdc4aw4xG66Ti8rUAW9Oc5h8Tl-W49d0_jF7Gz_PUysKekihKE3FreGsKGm5llzklUKkylhjS8GtYLmwcedrygsDvKQc1sCQS8G5zPgweex797796jAc9M4Fi3VtGmy7oEEwpWJUyYje_0O3beeb-LpIQR6XpCpSsqesb0PwWOm9dzvjfzRQfbSso2V9tKx7y7q3HIMPp3oTrKkrbxrrwl-a5ZlSionI3facQ8S_a5nFn8aWX7VRhC8</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Ahmed, E.</creator><creator>Eltawil, A. M.</creator><creator>Sabharwal, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130701</creationdate><title>Rate Gain Region and Design Tradeoffs for Full-Duplex Wireless Communications</title><author>Ahmed, E. ; Eltawil, A. M. ; Sabharwal, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-18daf3ca328d0db6347f9ee09acacd43c4274cc423b038a13d031b12e36433653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amplification</topic><topic>analog self-interference cancellation</topic><topic>Applied sciences</topic><topic>Barium</topic><topic>Cancellation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>digital self-interference cancellation</topic><topic>Exact sciences and technology</topic><topic>Full-duplex</topic><topic>Gain</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mixers</topic><topic>Noise</topic><topic>Phase noise</topic><topic>Product introduction</topic><topic>Quantization</topic><topic>Quantization (signal)</topic><topic>radio impairments</topic><topic>rate gain</topic><topic>Receivers</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, E.</creatorcontrib><creatorcontrib>Eltawil, A. M.</creatorcontrib><creatorcontrib>Sabharwal, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmed, E.</au><au>Eltawil, A. M.</au><au>Sabharwal, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rate Gain Region and Design Tradeoffs for Full-Duplex Wireless Communications</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>12</volume><issue>7</issue><spage>3556</spage><epage>3565</epage><pages>3556-3565</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>In this paper, we analytically study the regime in which practical full-duplex systems can achieve larger rates than an equivalent half-duplex systems. The key challenge in practical full-duplex systems is uncancelled self-interference signal, which is caused by a combination of hardware and implementation imperfections. Thus, we first present a signal model which captures the effect of significant impairments such as oscillator phase noise, low-noise amplifier noise figure, mixer noise, and analog-to-digital converter quantization noise. Using the detailed signal model, we study the rate gain region, which is defined as the region of received signal-of-interest strength where full-duplex systems outperform half-duplex systems in terms of achievable rate. The rate gain region is derived as a piecewise linear approximation in log-domain, and numerical results show that the approximation closely matches the exact region. Our analysis shows that when phase noise dominates mixer and quantization noise, full-duplex systems can use either active analog cancellation or baseband digital cancellation to achieve near-identical rate gain regions. Finally, as a design example, we numerically investigate the full-duplex system performance and rate gain region in typical indoor environments for practical wireless applications.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TWC.2013.060413.121871</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2013-07, Vol.12 (7), p.3556-3565
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_1417141609
source IEEE Electronic Library (IEL)
subjects Amplification
analog self-interference cancellation
Applied sciences
Barium
Cancellation
Detection, estimation, filtering, equalization, prediction
digital self-interference cancellation
Exact sciences and technology
Full-duplex
Gain
Information, signal and communications theory
Mathematical analysis
Mathematical model
Mixers
Noise
Phase noise
Product introduction
Quantization
Quantization (signal)
radio impairments
rate gain
Receivers
Signal and communications theory
Signal to noise ratio
Signal, noise
Studies
Telecommunications and information theory
Wireless communication
title Rate Gain Region and Design Tradeoffs for Full-Duplex Wireless Communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rate%20Gain%20Region%20and%20Design%20Tradeoffs%20for%20Full-Duplex%20Wireless%20Communications&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Ahmed,%20E.&rft.date=2013-07-01&rft.volume=12&rft.issue=7&rft.spage=3556&rft.epage=3565&rft.pages=3556-3565&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2013.060413.121871&rft_dat=%3Cproquest_RIE%3E3035287261%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1417141609&rft_id=info:pmid/&rft_ieee_id=6542771&rfr_iscdi=true