Rate Gain Region and Design Tradeoffs for Full-Duplex Wireless Communications
In this paper, we analytically study the regime in which practical full-duplex systems can achieve larger rates than an equivalent half-duplex systems. The key challenge in practical full-duplex systems is uncancelled self-interference signal, which is caused by a combination of hardware and impleme...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2013-07, Vol.12 (7), p.3556-3565 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3565 |
---|---|
container_issue | 7 |
container_start_page | 3556 |
container_title | IEEE transactions on wireless communications |
container_volume | 12 |
creator | Ahmed, E. Eltawil, A. M. Sabharwal, A. |
description | In this paper, we analytically study the regime in which practical full-duplex systems can achieve larger rates than an equivalent half-duplex systems. The key challenge in practical full-duplex systems is uncancelled self-interference signal, which is caused by a combination of hardware and implementation imperfections. Thus, we first present a signal model which captures the effect of significant impairments such as oscillator phase noise, low-noise amplifier noise figure, mixer noise, and analog-to-digital converter quantization noise. Using the detailed signal model, we study the rate gain region, which is defined as the region of received signal-of-interest strength where full-duplex systems outperform half-duplex systems in terms of achievable rate. The rate gain region is derived as a piecewise linear approximation in log-domain, and numerical results show that the approximation closely matches the exact region. Our analysis shows that when phase noise dominates mixer and quantization noise, full-duplex systems can use either active analog cancellation or baseband digital cancellation to achieve near-identical rate gain regions. Finally, as a design example, we numerically investigate the full-duplex system performance and rate gain region in typical indoor environments for practical wireless applications. |
doi_str_mv | 10.1109/TWC.2013.060413.121871 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1417141609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6542771</ieee_id><sourcerecordid>3035287261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-18daf3ca328d0db6347f9ee09acacd43c4274cc423b038a13d031b12e36433653</originalsourceid><addsrcrecordid>eNpdkNFKwzAUhosoOKdPIEhABG86c5I0bS5lc1OYCGOyy5ClpyOja2eygr69GR1eeJGcQL7_J_mS5A7oCICqp-VqPGIU-IhKKuIABkUOZ8kAsqxIGRPF-fHMZQosl5fJVQhbSiGXWTZI3hfmgGRmXEMWuHFtQ0xTkgkGt2nI0psS26oKpGo9mXZ1nU66fY3fZOU81hgCGbe7Xdc4aw4xG66Ti8rUAW9Oc5h8Tl-W49d0_jF7Gz_PUysKekihKE3FreGsKGm5llzklUKkylhjS8GtYLmwcedrygsDvKQc1sCQS8G5zPgweex797796jAc9M4Fi3VtGmy7oEEwpWJUyYje_0O3beeb-LpIQR6XpCpSsqesb0PwWOm9dzvjfzRQfbSso2V9tKx7y7q3HIMPp3oTrKkrbxrrwl-a5ZlSionI3facQ8S_a5nFn8aWX7VRhC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417141609</pqid></control><display><type>article</type><title>Rate Gain Region and Design Tradeoffs for Full-Duplex Wireless Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Ahmed, E. ; Eltawil, A. M. ; Sabharwal, A.</creator><creatorcontrib>Ahmed, E. ; Eltawil, A. M. ; Sabharwal, A.</creatorcontrib><description>In this paper, we analytically study the regime in which practical full-duplex systems can achieve larger rates than an equivalent half-duplex systems. The key challenge in practical full-duplex systems is uncancelled self-interference signal, which is caused by a combination of hardware and implementation imperfections. Thus, we first present a signal model which captures the effect of significant impairments such as oscillator phase noise, low-noise amplifier noise figure, mixer noise, and analog-to-digital converter quantization noise. Using the detailed signal model, we study the rate gain region, which is defined as the region of received signal-of-interest strength where full-duplex systems outperform half-duplex systems in terms of achievable rate. The rate gain region is derived as a piecewise linear approximation in log-domain, and numerical results show that the approximation closely matches the exact region. Our analysis shows that when phase noise dominates mixer and quantization noise, full-duplex systems can use either active analog cancellation or baseband digital cancellation to achieve near-identical rate gain regions. Finally, as a design example, we numerically investigate the full-duplex system performance and rate gain region in typical indoor environments for practical wireless applications.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2013.060413.121871</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplification ; analog self-interference cancellation ; Applied sciences ; Barium ; Cancellation ; Detection, estimation, filtering, equalization, prediction ; digital self-interference cancellation ; Exact sciences and technology ; Full-duplex ; Gain ; Information, signal and communications theory ; Mathematical analysis ; Mathematical model ; Mixers ; Noise ; Phase noise ; Product introduction ; Quantization ; Quantization (signal) ; radio impairments ; rate gain ; Receivers ; Signal and communications theory ; Signal to noise ratio ; Signal, noise ; Studies ; Telecommunications and information theory ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2013-07, Vol.12 (7), p.3556-3565</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-18daf3ca328d0db6347f9ee09acacd43c4274cc423b038a13d031b12e36433653</citedby><cites>FETCH-LOGICAL-c480t-18daf3ca328d0db6347f9ee09acacd43c4274cc423b038a13d031b12e36433653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6542771$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6542771$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27599924$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, E.</creatorcontrib><creatorcontrib>Eltawil, A. M.</creatorcontrib><creatorcontrib>Sabharwal, A.</creatorcontrib><title>Rate Gain Region and Design Tradeoffs for Full-Duplex Wireless Communications</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>In this paper, we analytically study the regime in which practical full-duplex systems can achieve larger rates than an equivalent half-duplex systems. The key challenge in practical full-duplex systems is uncancelled self-interference signal, which is caused by a combination of hardware and implementation imperfections. Thus, we first present a signal model which captures the effect of significant impairments such as oscillator phase noise, low-noise amplifier noise figure, mixer noise, and analog-to-digital converter quantization noise. Using the detailed signal model, we study the rate gain region, which is defined as the region of received signal-of-interest strength where full-duplex systems outperform half-duplex systems in terms of achievable rate. The rate gain region is derived as a piecewise linear approximation in log-domain, and numerical results show that the approximation closely matches the exact region. Our analysis shows that when phase noise dominates mixer and quantization noise, full-duplex systems can use either active analog cancellation or baseband digital cancellation to achieve near-identical rate gain regions. Finally, as a design example, we numerically investigate the full-duplex system performance and rate gain region in typical indoor environments for practical wireless applications.</description><subject>Amplification</subject><subject>analog self-interference cancellation</subject><subject>Applied sciences</subject><subject>Barium</subject><subject>Cancellation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>digital self-interference cancellation</subject><subject>Exact sciences and technology</subject><subject>Full-duplex</subject><subject>Gain</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mixers</subject><subject>Noise</subject><subject>Phase noise</subject><subject>Product introduction</subject><subject>Quantization</subject><subject>Quantization (signal)</subject><subject>radio impairments</subject><subject>rate gain</subject><subject>Receivers</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkNFKwzAUhosoOKdPIEhABG86c5I0bS5lc1OYCGOyy5ClpyOja2eygr69GR1eeJGcQL7_J_mS5A7oCICqp-VqPGIU-IhKKuIABkUOZ8kAsqxIGRPF-fHMZQosl5fJVQhbSiGXWTZI3hfmgGRmXEMWuHFtQ0xTkgkGt2nI0psS26oKpGo9mXZ1nU66fY3fZOU81hgCGbe7Xdc4aw4xG66Ti8rUAW9Oc5h8Tl-W49d0_jF7Gz_PUysKekihKE3FreGsKGm5llzklUKkylhjS8GtYLmwcedrygsDvKQc1sCQS8G5zPgweex797796jAc9M4Fi3VtGmy7oEEwpWJUyYje_0O3beeb-LpIQR6XpCpSsqesb0PwWOm9dzvjfzRQfbSso2V9tKx7y7q3HIMPp3oTrKkrbxrrwl-a5ZlSionI3facQ8S_a5nFn8aWX7VRhC8</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Ahmed, E.</creator><creator>Eltawil, A. M.</creator><creator>Sabharwal, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130701</creationdate><title>Rate Gain Region and Design Tradeoffs for Full-Duplex Wireless Communications</title><author>Ahmed, E. ; Eltawil, A. M. ; Sabharwal, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-18daf3ca328d0db6347f9ee09acacd43c4274cc423b038a13d031b12e36433653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amplification</topic><topic>analog self-interference cancellation</topic><topic>Applied sciences</topic><topic>Barium</topic><topic>Cancellation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>digital self-interference cancellation</topic><topic>Exact sciences and technology</topic><topic>Full-duplex</topic><topic>Gain</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mixers</topic><topic>Noise</topic><topic>Phase noise</topic><topic>Product introduction</topic><topic>Quantization</topic><topic>Quantization (signal)</topic><topic>radio impairments</topic><topic>rate gain</topic><topic>Receivers</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, E.</creatorcontrib><creatorcontrib>Eltawil, A. M.</creatorcontrib><creatorcontrib>Sabharwal, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmed, E.</au><au>Eltawil, A. M.</au><au>Sabharwal, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rate Gain Region and Design Tradeoffs for Full-Duplex Wireless Communications</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>12</volume><issue>7</issue><spage>3556</spage><epage>3565</epage><pages>3556-3565</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>In this paper, we analytically study the regime in which practical full-duplex systems can achieve larger rates than an equivalent half-duplex systems. The key challenge in practical full-duplex systems is uncancelled self-interference signal, which is caused by a combination of hardware and implementation imperfections. Thus, we first present a signal model which captures the effect of significant impairments such as oscillator phase noise, low-noise amplifier noise figure, mixer noise, and analog-to-digital converter quantization noise. Using the detailed signal model, we study the rate gain region, which is defined as the region of received signal-of-interest strength where full-duplex systems outperform half-duplex systems in terms of achievable rate. The rate gain region is derived as a piecewise linear approximation in log-domain, and numerical results show that the approximation closely matches the exact region. Our analysis shows that when phase noise dominates mixer and quantization noise, full-duplex systems can use either active analog cancellation or baseband digital cancellation to achieve near-identical rate gain regions. Finally, as a design example, we numerically investigate the full-duplex system performance and rate gain region in typical indoor environments for practical wireless applications.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TWC.2013.060413.121871</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2013-07, Vol.12 (7), p.3556-3565 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_1417141609 |
source | IEEE Electronic Library (IEL) |
subjects | Amplification analog self-interference cancellation Applied sciences Barium Cancellation Detection, estimation, filtering, equalization, prediction digital self-interference cancellation Exact sciences and technology Full-duplex Gain Information, signal and communications theory Mathematical analysis Mathematical model Mixers Noise Phase noise Product introduction Quantization Quantization (signal) radio impairments rate gain Receivers Signal and communications theory Signal to noise ratio Signal, noise Studies Telecommunications and information theory Wireless communication |
title | Rate Gain Region and Design Tradeoffs for Full-Duplex Wireless Communications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rate%20Gain%20Region%20and%20Design%20Tradeoffs%20for%20Full-Duplex%20Wireless%20Communications&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Ahmed,%20E.&rft.date=2013-07-01&rft.volume=12&rft.issue=7&rft.spage=3556&rft.epage=3565&rft.pages=3556-3565&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2013.060413.121871&rft_dat=%3Cproquest_RIE%3E3035287261%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1417141609&rft_id=info:pmid/&rft_ieee_id=6542771&rfr_iscdi=true |