New composition-dependent cooling and heating curves for galaxy evolution simulations

In this paper, we present a new calculation of composition-dependent radiative cooling and heating curves of low-density gas, intended primarily for use in numerical simulations of galaxy formation and evolution. These curves depend on only five parameters: temperature, density, redshift, [Fe/H] and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2013-08, Vol.433 (4), p.3005-3016
Hauptverfasser: De Rijcke, S., Schroyen, J., Vandenbroucke, B., Jachowicz, N., Decroos, J., Cloet-Osselaer, A., Koleva, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3016
container_issue 4
container_start_page 3005
container_title Monthly notices of the Royal Astronomical Society
container_volume 433
creator De Rijcke, S.
Schroyen, J.
Vandenbroucke, B.
Jachowicz, N.
Decroos, J.
Cloet-Osselaer, A.
Koleva, M.
description In this paper, we present a new calculation of composition-dependent radiative cooling and heating curves of low-density gas, intended primarily for use in numerical simulations of galaxy formation and evolution. These curves depend on only five parameters: temperature, density, redshift, [Fe/H] and [Mg/Fe]. They are easily tabulated and can be efficiently interpolated during a simulation. The ionization equilibrium of 14 key elements is determined for temperatures between 10 K and 109 K and densities up to 100 amu cm−3 taking into account collisional and radiative ionization, by the cosmic UV background and an interstellar radiation field, and by charge-transfer reactions. These elements, ranging from H to Ni, are the ones most abundantly produced and/or released by SNIa, SNII and intermediate-mass stars. Self-shielding of the gas at high densities by neutral hydrogen is taken into account in an approximate way by exponentially suppressing the H-ionizing part of the cosmic UV background for H i densities above a threshold density of n HI, crit = 0.007 cm−3. We discuss how the ionization equilibrium, and the cooling and heating curves, depends on the physical properties of the gas. The main advantage of the work presented here is that, within the confines of a well-defined chemical evolution model and adopting the ionization equilibrium approximation, it provides accurate cooling and heating curves for a wide range of physical and chemical gas properties, including the effects of self-shielding. The latter is key to resolving the formation of cold, neutral, high-density clouds suitable for star formation in galaxy simulations.
doi_str_mv 10.1093/mnras/stt942
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_journals_1415739455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stt942</oup_id><sourcerecordid>3032647631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-be6f7691546756171f8b593ccdc6624f96e608d1e7bf18bd0828ff6371080d453</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqWw8QMiMbAQ6os_koyoooBUwUJny4ntkiqxg-0U-u9pCDPTvTo97530IHQN-B5wSRad9TIsQowlzU7QDAhnaVZyfopmGBOWFjnAOboIYYcxpiTjM7R51V9J7brehSY2zqZK99oqbeNx69rGbhNpVfKhZRxzPfi9DolxPtnKVn4fEr137TA2k9B0QyvHGC7RmZFt0Fd_c442q8f35XO6fnt6WT6s05oQEtNKc5PzEhjlOeOQgykqVpK6VjXnGTUl1xwXCnReGSgqhYusMIaTHHCBFWVkjm6mu713n4MOUezc4O3xpQAKLCclZSN1N1G1dyF4bUTvm076gwAsRnHiV5yYxB3x2wl3Q_8_-QNxJXFn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1415739455</pqid></control><display><type>article</type><title>New composition-dependent cooling and heating curves for galaxy evolution simulations</title><source>Oxford Journals Open Access Collection</source><creator>De Rijcke, S. ; Schroyen, J. ; Vandenbroucke, B. ; Jachowicz, N. ; Decroos, J. ; Cloet-Osselaer, A. ; Koleva, M.</creator><creatorcontrib>De Rijcke, S. ; Schroyen, J. ; Vandenbroucke, B. ; Jachowicz, N. ; Decroos, J. ; Cloet-Osselaer, A. ; Koleva, M.</creatorcontrib><description>In this paper, we present a new calculation of composition-dependent radiative cooling and heating curves of low-density gas, intended primarily for use in numerical simulations of galaxy formation and evolution. These curves depend on only five parameters: temperature, density, redshift, [Fe/H] and [Mg/Fe]. They are easily tabulated and can be efficiently interpolated during a simulation. The ionization equilibrium of 14 key elements is determined for temperatures between 10 K and 109 K and densities up to 100 amu cm−3 taking into account collisional and radiative ionization, by the cosmic UV background and an interstellar radiation field, and by charge-transfer reactions. These elements, ranging from H to Ni, are the ones most abundantly produced and/or released by SNIa, SNII and intermediate-mass stars. Self-shielding of the gas at high densities by neutral hydrogen is taken into account in an approximate way by exponentially suppressing the H-ionizing part of the cosmic UV background for H i densities above a threshold density of n HI, crit = 0.007 cm−3. We discuss how the ionization equilibrium, and the cooling and heating curves, depends on the physical properties of the gas. The main advantage of the work presented here is that, within the confines of a well-defined chemical evolution model and adopting the ionization equilibrium approximation, it provides accurate cooling and heating curves for a wide range of physical and chemical gas properties, including the effects of self-shielding. The latter is key to resolving the formation of cold, neutral, high-density clouds suitable for star formation in galaxy simulations.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stt942</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Approximation ; Cosmic rays ; Simulation ; Star &amp; galaxy formation ; Ultraviolet astronomy</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2013-08, Vol.433 (4), p.3005-3016</ispartof><rights>2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2013</rights><rights>Copyright Oxford University Press, UK Aug 21, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-be6f7691546756171f8b593ccdc6624f96e608d1e7bf18bd0828ff6371080d453</citedby><cites>FETCH-LOGICAL-c333t-be6f7691546756171f8b593ccdc6624f96e608d1e7bf18bd0828ff6371080d453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,1586,1606,27931,27932</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stt942$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>De Rijcke, S.</creatorcontrib><creatorcontrib>Schroyen, J.</creatorcontrib><creatorcontrib>Vandenbroucke, B.</creatorcontrib><creatorcontrib>Jachowicz, N.</creatorcontrib><creatorcontrib>Decroos, J.</creatorcontrib><creatorcontrib>Cloet-Osselaer, A.</creatorcontrib><creatorcontrib>Koleva, M.</creatorcontrib><title>New composition-dependent cooling and heating curves for galaxy evolution simulations</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>In this paper, we present a new calculation of composition-dependent radiative cooling and heating curves of low-density gas, intended primarily for use in numerical simulations of galaxy formation and evolution. These curves depend on only five parameters: temperature, density, redshift, [Fe/H] and [Mg/Fe]. They are easily tabulated and can be efficiently interpolated during a simulation. The ionization equilibrium of 14 key elements is determined for temperatures between 10 K and 109 K and densities up to 100 amu cm−3 taking into account collisional and radiative ionization, by the cosmic UV background and an interstellar radiation field, and by charge-transfer reactions. These elements, ranging from H to Ni, are the ones most abundantly produced and/or released by SNIa, SNII and intermediate-mass stars. Self-shielding of the gas at high densities by neutral hydrogen is taken into account in an approximate way by exponentially suppressing the H-ionizing part of the cosmic UV background for H i densities above a threshold density of n HI, crit = 0.007 cm−3. We discuss how the ionization equilibrium, and the cooling and heating curves, depends on the physical properties of the gas. The main advantage of the work presented here is that, within the confines of a well-defined chemical evolution model and adopting the ionization equilibrium approximation, it provides accurate cooling and heating curves for a wide range of physical and chemical gas properties, including the effects of self-shielding. The latter is key to resolving the formation of cold, neutral, high-density clouds suitable for star formation in galaxy simulations.</description><subject>Approximation</subject><subject>Cosmic rays</subject><subject>Simulation</subject><subject>Star &amp; galaxy formation</subject><subject>Ultraviolet astronomy</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqWw8QMiMbAQ6os_koyoooBUwUJny4ntkiqxg-0U-u9pCDPTvTo97530IHQN-B5wSRad9TIsQowlzU7QDAhnaVZyfopmGBOWFjnAOboIYYcxpiTjM7R51V9J7brehSY2zqZK99oqbeNx69rGbhNpVfKhZRxzPfi9DolxPtnKVn4fEr137TA2k9B0QyvHGC7RmZFt0Fd_c442q8f35XO6fnt6WT6s05oQEtNKc5PzEhjlOeOQgykqVpK6VjXnGTUl1xwXCnReGSgqhYusMIaTHHCBFWVkjm6mu713n4MOUezc4O3xpQAKLCclZSN1N1G1dyF4bUTvm076gwAsRnHiV5yYxB3x2wl3Q_8_-QNxJXFn</recordid><startdate>20130821</startdate><enddate>20130821</enddate><creator>De Rijcke, S.</creator><creator>Schroyen, J.</creator><creator>Vandenbroucke, B.</creator><creator>Jachowicz, N.</creator><creator>Decroos, J.</creator><creator>Cloet-Osselaer, A.</creator><creator>Koleva, M.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130821</creationdate><title>New composition-dependent cooling and heating curves for galaxy evolution simulations</title><author>De Rijcke, S. ; Schroyen, J. ; Vandenbroucke, B. ; Jachowicz, N. ; Decroos, J. ; Cloet-Osselaer, A. ; Koleva, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-be6f7691546756171f8b593ccdc6624f96e608d1e7bf18bd0828ff6371080d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Cosmic rays</topic><topic>Simulation</topic><topic>Star &amp; galaxy formation</topic><topic>Ultraviolet astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Rijcke, S.</creatorcontrib><creatorcontrib>Schroyen, J.</creatorcontrib><creatorcontrib>Vandenbroucke, B.</creatorcontrib><creatorcontrib>Jachowicz, N.</creatorcontrib><creatorcontrib>Decroos, J.</creatorcontrib><creatorcontrib>Cloet-Osselaer, A.</creatorcontrib><creatorcontrib>Koleva, M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Rijcke, S.</au><au>Schroyen, J.</au><au>Vandenbroucke, B.</au><au>Jachowicz, N.</au><au>Decroos, J.</au><au>Cloet-Osselaer, A.</au><au>Koleva, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New composition-dependent cooling and heating curves for galaxy evolution simulations</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><date>2013-08-21</date><risdate>2013</risdate><volume>433</volume><issue>4</issue><spage>3005</spage><epage>3016</epage><pages>3005-3016</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>In this paper, we present a new calculation of composition-dependent radiative cooling and heating curves of low-density gas, intended primarily for use in numerical simulations of galaxy formation and evolution. These curves depend on only five parameters: temperature, density, redshift, [Fe/H] and [Mg/Fe]. They are easily tabulated and can be efficiently interpolated during a simulation. The ionization equilibrium of 14 key elements is determined for temperatures between 10 K and 109 K and densities up to 100 amu cm−3 taking into account collisional and radiative ionization, by the cosmic UV background and an interstellar radiation field, and by charge-transfer reactions. These elements, ranging from H to Ni, are the ones most abundantly produced and/or released by SNIa, SNII and intermediate-mass stars. Self-shielding of the gas at high densities by neutral hydrogen is taken into account in an approximate way by exponentially suppressing the H-ionizing part of the cosmic UV background for H i densities above a threshold density of n HI, crit = 0.007 cm−3. We discuss how the ionization equilibrium, and the cooling and heating curves, depends on the physical properties of the gas. The main advantage of the work presented here is that, within the confines of a well-defined chemical evolution model and adopting the ionization equilibrium approximation, it provides accurate cooling and heating curves for a wide range of physical and chemical gas properties, including the effects of self-shielding. The latter is key to resolving the formation of cold, neutral, high-density clouds suitable for star formation in galaxy simulations.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stt942</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2013-08, Vol.433 (4), p.3005-3016
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_journals_1415739455
source Oxford Journals Open Access Collection
subjects Approximation
Cosmic rays
Simulation
Star & galaxy formation
Ultraviolet astronomy
title New composition-dependent cooling and heating curves for galaxy evolution simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20composition-dependent%20cooling%20and%20heating%20curves%20for%20galaxy%20evolution%20simulations&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=De%20Rijcke,%20S.&rft.date=2013-08-21&rft.volume=433&rft.issue=4&rft.spage=3005&rft.epage=3016&rft.pages=3005-3016&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stt942&rft_dat=%3Cproquest_TOX%3E3032647631%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1415739455&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stt942&rfr_iscdi=true