Solidification and Microstructural Evolution of Hypereutectic Al-15Si-4Cu-Mg Alloys with High Magnesium Contents

The low coefficient of thermal expansion and good wear resistance of hypereutectic Al-Si-Mg alloys with high Mg contents, together with the increasing demand for lightweight materials in engine applications have generated an increasing interest in these materials in the automotive industry. In the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2013-09, Vol.44 (9), p.4282-4295
Hauptverfasser: Tebib, M., Ajersch, F., Samuel, A. M., Chen, X. -G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4295
container_issue 9
container_start_page 4282
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 44
creator Tebib, M.
Ajersch, F.
Samuel, A. M.
Chen, X. -G.
description The low coefficient of thermal expansion and good wear resistance of hypereutectic Al-Si-Mg alloys with high Mg contents, together with the increasing demand for lightweight materials in engine applications have generated an increasing interest in these materials in the automotive industry. In the interests of pursuing the development of new wear-resistant alloys, the current study was undertaken to investigate the effects of Mg additions ranging from 6 to 15 pct on the solidification behavior of hypereutectic Al-15Si-4Cu-Mg alloy using thermodynamic calculations, thermal analysis, and extensive microstructural examination. The Mg level strongly influenced the microstructural evolution of the primary Mg 2 Si phase as well as the solidification behavior. Thermodynamic predictions using ThermoCalc software reported the occurrence of six reactions, comprising the formation of primary Mg 2 Si; two pre-eutectic binary reactions, forming either Mg 2 Si + Si or Mg 2 Si + α-Al phases; the main ternary eutectic reaction forming Mg 2 Si + Si + α-Al; and two post-eutectic reactions resulting in the precipitation of the Q-Al 5 Mg 8 Cu 2 Si 6 and θ-Al 2 Cu phases, respectively. Microstructures of the four alloys studied confirmed the presence of these phases, in addition to that of the π-Al 8 Mg 3 FeSi 6 (π-Fe) phase. The presence of the π-Fe phase was also confirmed by thermal analysis. The morphology of the primary Mg 2 Si phase changed from an octahedral to a dendrite form at 12.52 pct Mg. Any further Mg addition only coarsened the dendrites. Image analysis measurements revealed a close correlation between the measured and calculated phase fractions of the primary Mg 2 Si and Si phases. ThermoCalc and Scheil calculations show good agreement with the experimental results obtained from microstructural and thermal analyses.
doi_str_mv 10.1007/s11661-013-1769-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1412095333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3027586791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-fc35930bfe7cc646951dce6898d00138d037066afdce4704a74794a997718f7c3</originalsourceid><addsrcrecordid>eNp1UMFOAyEQJUYTa_UDvJEYjygsLJRj06g1aeOheiZIoaXZLiuwmv691DbGi3NgGOa9N8MD4JrgO4KxuE-EcE4QJhQRwSWSJ2BAalYqyfBpuWNBUc0reg4uUtpgjImkfAC6RWj80jtvdPahhbpdwrk3MaQce5P7qBv48Bma_qcbHJzuOhttn63J3sBxg0i98IhNejRflbIJuwS_fF7DqV-t4VyvWpt8v4WT0Gbb5nQJzpxukr065iF4e3x4nUzR7OXpeTKeIUMZz8gZWkuK350VxnDGZU2WxvKRHC3L6rScVGDOtSuvTGCmBROSaSmFICMnDB2Cm4NuF8NHb1NWm9DHtoxUhJEKy5qWGAJyQO1_nKJ1qot-q-NOEaz2xqqDsarMVHtjlSyc26OyTkY3LurW-PRLrASvRgzzgqsOuFRa7crGPxv8K_4NBM6H7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412095333</pqid></control><display><type>article</type><title>Solidification and Microstructural Evolution of Hypereutectic Al-15Si-4Cu-Mg Alloys with High Magnesium Contents</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tebib, M. ; Ajersch, F. ; Samuel, A. M. ; Chen, X. -G.</creator><creatorcontrib>Tebib, M. ; Ajersch, F. ; Samuel, A. M. ; Chen, X. -G.</creatorcontrib><description>The low coefficient of thermal expansion and good wear resistance of hypereutectic Al-Si-Mg alloys with high Mg contents, together with the increasing demand for lightweight materials in engine applications have generated an increasing interest in these materials in the automotive industry. In the interests of pursuing the development of new wear-resistant alloys, the current study was undertaken to investigate the effects of Mg additions ranging from 6 to 15 pct on the solidification behavior of hypereutectic Al-15Si-4Cu-Mg alloy using thermodynamic calculations, thermal analysis, and extensive microstructural examination. The Mg level strongly influenced the microstructural evolution of the primary Mg 2 Si phase as well as the solidification behavior. Thermodynamic predictions using ThermoCalc software reported the occurrence of six reactions, comprising the formation of primary Mg 2 Si; two pre-eutectic binary reactions, forming either Mg 2 Si + Si or Mg 2 Si + α-Al phases; the main ternary eutectic reaction forming Mg 2 Si + Si + α-Al; and two post-eutectic reactions resulting in the precipitation of the Q-Al 5 Mg 8 Cu 2 Si 6 and θ-Al 2 Cu phases, respectively. Microstructures of the four alloys studied confirmed the presence of these phases, in addition to that of the π-Al 8 Mg 3 FeSi 6 (π-Fe) phase. The presence of the π-Fe phase was also confirmed by thermal analysis. The morphology of the primary Mg 2 Si phase changed from an octahedral to a dendrite form at 12.52 pct Mg. Any further Mg addition only coarsened the dendrites. Image analysis measurements revealed a close correlation between the measured and calculated phase fractions of the primary Mg 2 Si and Si phases. ThermoCalc and Scheil calculations show good agreement with the experimental results obtained from microstructural and thermal analyses.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-013-1769-9</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Exact sciences and technology ; Magnesium composites ; Materials Science ; Metallic Materials ; Metallurgy ; Metals. Metallurgy ; Microstructure ; Nanotechnology ; Phase transitions ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2013-09, Vol.44 (9), p.4282-4295</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-fc35930bfe7cc646951dce6898d00138d037066afdce4704a74794a997718f7c3</citedby><cites>FETCH-LOGICAL-c346t-fc35930bfe7cc646951dce6898d00138d037066afdce4704a74794a997718f7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-013-1769-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-013-1769-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27628406$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tebib, M.</creatorcontrib><creatorcontrib>Ajersch, F.</creatorcontrib><creatorcontrib>Samuel, A. M.</creatorcontrib><creatorcontrib>Chen, X. -G.</creatorcontrib><title>Solidification and Microstructural Evolution of Hypereutectic Al-15Si-4Cu-Mg Alloys with High Magnesium Contents</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The low coefficient of thermal expansion and good wear resistance of hypereutectic Al-Si-Mg alloys with high Mg contents, together with the increasing demand for lightweight materials in engine applications have generated an increasing interest in these materials in the automotive industry. In the interests of pursuing the development of new wear-resistant alloys, the current study was undertaken to investigate the effects of Mg additions ranging from 6 to 15 pct on the solidification behavior of hypereutectic Al-15Si-4Cu-Mg alloy using thermodynamic calculations, thermal analysis, and extensive microstructural examination. The Mg level strongly influenced the microstructural evolution of the primary Mg 2 Si phase as well as the solidification behavior. Thermodynamic predictions using ThermoCalc software reported the occurrence of six reactions, comprising the formation of primary Mg 2 Si; two pre-eutectic binary reactions, forming either Mg 2 Si + Si or Mg 2 Si + α-Al phases; the main ternary eutectic reaction forming Mg 2 Si + Si + α-Al; and two post-eutectic reactions resulting in the precipitation of the Q-Al 5 Mg 8 Cu 2 Si 6 and θ-Al 2 Cu phases, respectively. Microstructures of the four alloys studied confirmed the presence of these phases, in addition to that of the π-Al 8 Mg 3 FeSi 6 (π-Fe) phase. The presence of the π-Fe phase was also confirmed by thermal analysis. The morphology of the primary Mg 2 Si phase changed from an octahedral to a dendrite form at 12.52 pct Mg. Any further Mg addition only coarsened the dendrites. Image analysis measurements revealed a close correlation between the measured and calculated phase fractions of the primary Mg 2 Si and Si phases. ThermoCalc and Scheil calculations show good agreement with the experimental results obtained from microstructural and thermal analyses.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Exact sciences and technology</subject><subject>Magnesium composites</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Phase transitions</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UMFOAyEQJUYTa_UDvJEYjygsLJRj06g1aeOheiZIoaXZLiuwmv691DbGi3NgGOa9N8MD4JrgO4KxuE-EcE4QJhQRwSWSJ2BAalYqyfBpuWNBUc0reg4uUtpgjImkfAC6RWj80jtvdPahhbpdwrk3MaQce5P7qBv48Bma_qcbHJzuOhttn63J3sBxg0i98IhNejRflbIJuwS_fF7DqV-t4VyvWpt8v4WT0Gbb5nQJzpxukr065iF4e3x4nUzR7OXpeTKeIUMZz8gZWkuK350VxnDGZU2WxvKRHC3L6rScVGDOtSuvTGCmBROSaSmFICMnDB2Cm4NuF8NHb1NWm9DHtoxUhJEKy5qWGAJyQO1_nKJ1qot-q-NOEaz2xqqDsarMVHtjlSyc26OyTkY3LurW-PRLrASvRgzzgqsOuFRa7crGPxv8K_4NBM6H7g</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Tebib, M.</creator><creator>Ajersch, F.</creator><creator>Samuel, A. M.</creator><creator>Chen, X. -G.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20130901</creationdate><title>Solidification and Microstructural Evolution of Hypereutectic Al-15Si-4Cu-Mg Alloys with High Magnesium Contents</title><author>Tebib, M. ; Ajersch, F. ; Samuel, A. M. ; Chen, X. -G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-fc35930bfe7cc646951dce6898d00138d037066afdce4704a74794a997718f7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Exact sciences and technology</topic><topic>Magnesium composites</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Phase transitions</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tebib, M.</creatorcontrib><creatorcontrib>Ajersch, F.</creatorcontrib><creatorcontrib>Samuel, A. M.</creatorcontrib><creatorcontrib>Chen, X. -G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tebib, M.</au><au>Ajersch, F.</au><au>Samuel, A. M.</au><au>Chen, X. -G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solidification and Microstructural Evolution of Hypereutectic Al-15Si-4Cu-Mg Alloys with High Magnesium Contents</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>44</volume><issue>9</issue><spage>4282</spage><epage>4295</epage><pages>4282-4295</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The low coefficient of thermal expansion and good wear resistance of hypereutectic Al-Si-Mg alloys with high Mg contents, together with the increasing demand for lightweight materials in engine applications have generated an increasing interest in these materials in the automotive industry. In the interests of pursuing the development of new wear-resistant alloys, the current study was undertaken to investigate the effects of Mg additions ranging from 6 to 15 pct on the solidification behavior of hypereutectic Al-15Si-4Cu-Mg alloy using thermodynamic calculations, thermal analysis, and extensive microstructural examination. The Mg level strongly influenced the microstructural evolution of the primary Mg 2 Si phase as well as the solidification behavior. Thermodynamic predictions using ThermoCalc software reported the occurrence of six reactions, comprising the formation of primary Mg 2 Si; two pre-eutectic binary reactions, forming either Mg 2 Si + Si or Mg 2 Si + α-Al phases; the main ternary eutectic reaction forming Mg 2 Si + Si + α-Al; and two post-eutectic reactions resulting in the precipitation of the Q-Al 5 Mg 8 Cu 2 Si 6 and θ-Al 2 Cu phases, respectively. Microstructures of the four alloys studied confirmed the presence of these phases, in addition to that of the π-Al 8 Mg 3 FeSi 6 (π-Fe) phase. The presence of the π-Fe phase was also confirmed by thermal analysis. The morphology of the primary Mg 2 Si phase changed from an octahedral to a dendrite form at 12.52 pct Mg. Any further Mg addition only coarsened the dendrites. Image analysis measurements revealed a close correlation between the measured and calculated phase fractions of the primary Mg 2 Si and Si phases. ThermoCalc and Scheil calculations show good agreement with the experimental results obtained from microstructural and thermal analyses.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-013-1769-9</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2013-09, Vol.44 (9), p.4282-4295
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_1412095333
source SpringerLink Journals - AutoHoldings
subjects Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Exact sciences and technology
Magnesium composites
Materials Science
Metallic Materials
Metallurgy
Metals. Metallurgy
Microstructure
Nanotechnology
Phase transitions
Structural Materials
Surfaces and Interfaces
Thin Films
title Solidification and Microstructural Evolution of Hypereutectic Al-15Si-4Cu-Mg Alloys with High Magnesium Contents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solidification%20and%20Microstructural%20Evolution%20of%20Hypereutectic%20Al-15Si-4Cu-Mg%20Alloys%20with%20High%20Magnesium%20Contents&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Tebib,%20M.&rft.date=2013-09-01&rft.volume=44&rft.issue=9&rft.spage=4282&rft.epage=4295&rft.pages=4282-4295&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-013-1769-9&rft_dat=%3Cproquest_cross%3E3027586791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412095333&rft_id=info:pmid/&rfr_iscdi=true