Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits
Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal w...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-07, Vol.110 (29), p.12090-12095 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12095 |
---|---|
container_issue | 29 |
container_start_page | 12090 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Kirkby, Lowry A. Feller, Marla B. |
description | Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal waves during the first postnatal week leads to the generation of “recovered” waves through a distinct, gap junction–mediated circuit. Unlike cholinergic waves, these recovered waves were modulated by dopaminergic and glutamatergic signaling, and required the presence of the gap junction protein connexin 36. Moreover, in contrast to cholinergic waves, recovered waves were stimulated by ambient light via activation of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The involvement of intrinsically photosensitive retinal ganglion cells in this reconfiguration of wave-generating circuits offers an avenue of retinal circuit plasticity during development that was previously unknown. |
doi_str_mv | 10.1073/pnas.1222150110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1411295391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42712531</jstor_id><sourcerecordid>42712531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-f4a21850c34462cfa229f975b68c3585e81fc98c5e322beda5d35efbbb9217ad3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEokvhzAmIhCpxSTvjjyS-VEIVhUqVOECPyHK8ztarrL3YTtH-99jaZQucLGt-M2_evKp6jXCO0NGLrVPxHAkhyAERnlQLBIFNywQ8rRYApGt6RthJ9SLGNQAI3sPz6oTQnmDH2KL6ceNSsC5araZpV2_vffLR5H-yD6ZeKbearHe1NtMUa-0LPMzJ1MnX20nFZLVNu9q6OphknZrqXyr3aRv0bFN8WT0b1RTNq8N7Wt1df_p-9aW5_fr55urjbaM5IakZmSLYc9CUsZboUREiRtHxoe015T03PY5a9JobSshgloovKTfjMAwi21BLelpd7udu52FjltrkPdUkt8FuVNhJr6z8t-LsvVz5B0k77BEwD_hwGBD8z9nEJDc2FtPKGT9HiQzKYRF5Rt__h679HLL1QiESwakoAy_2lA4-xmDG4zIIskQnS3TyMbrc8fZvD0f-T1YZODsAKua0xqCctvGR63jbckYzVx-4onCUzbpEZEEQRevNHlnH5MORYaRDwmnZ_t2-Piov1SpkmbtvBLCFfKuOA9Df-I3BOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1411295391</pqid></control><display><type>article</type><title>Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kirkby, Lowry A. ; Feller, Marla B.</creator><creatorcontrib>Kirkby, Lowry A. ; Feller, Marla B.</creatorcontrib><description>Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal waves during the first postnatal week leads to the generation of “recovered” waves through a distinct, gap junction–mediated circuit. Unlike cholinergic waves, these recovered waves were modulated by dopaminergic and glutamatergic signaling, and required the presence of the gap junction protein connexin 36. Moreover, in contrast to cholinergic waves, recovered waves were stimulated by ambient light via activation of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The involvement of intrinsically photosensitive retinal ganglion cells in this reconfiguration of wave-generating circuits offers an avenue of retinal circuit plasticity during development that was previously unknown.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1222150110</identifier><identifier>PMID: 23821744</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences</publisher><subject>Amacrine cells ; Animals ; Biological and medical sciences ; Biological Sciences ; Cells ; Cholinergics ; Connexin 26 ; Connexins ; Connexins - genetics ; Connexins - metabolism ; Correlation analysis ; Electrophysiological Phenomena - physiology ; Eye and associated structures. Visual pathways and centers. Vision ; Fundamental and applied biological sciences. Psychology ; Ganglia ; Gap Junction delta-2 Protein ; Gap junctions ; Gap Junctions - metabolism ; Light Signal Transduction - physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microscopy, Interference ; Nervous system ; Neural conduction ; Neurons ; Neuroscience ; Plasticity ; Proteins ; Receptors ; Retina ; Retina - growth & development ; Retinal Ganglion Cells - metabolism ; Rod Opsins - genetics ; Rod Opsins - metabolism ; Synaptic Transmission - physiology ; Vertebrates: nervous system and sense organs</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (29), p.12090-12095</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Jul 16, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-f4a21850c34462cfa229f975b68c3585e81fc98c5e322beda5d35efbbb9217ad3</citedby><cites>FETCH-LOGICAL-c522t-f4a21850c34462cfa229f975b68c3585e81fc98c5e322beda5d35efbbb9217ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/29.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42712531$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42712531$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27566543$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23821744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirkby, Lowry A.</creatorcontrib><creatorcontrib>Feller, Marla B.</creatorcontrib><title>Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal waves during the first postnatal week leads to the generation of “recovered” waves through a distinct, gap junction–mediated circuit. Unlike cholinergic waves, these recovered waves were modulated by dopaminergic and glutamatergic signaling, and required the presence of the gap junction protein connexin 36. Moreover, in contrast to cholinergic waves, recovered waves were stimulated by ambient light via activation of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The involvement of intrinsically photosensitive retinal ganglion cells in this reconfiguration of wave-generating circuits offers an avenue of retinal circuit plasticity during development that was previously unknown.</description><subject>Amacrine cells</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>Cholinergics</subject><subject>Connexin 26</subject><subject>Connexins</subject><subject>Connexins - genetics</subject><subject>Connexins - metabolism</subject><subject>Correlation analysis</subject><subject>Electrophysiological Phenomena - physiology</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ganglia</subject><subject>Gap Junction delta-2 Protein</subject><subject>Gap junctions</subject><subject>Gap Junctions - metabolism</subject><subject>Light Signal Transduction - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microscopy, Interference</subject><subject>Nervous system</subject><subject>Neural conduction</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Plasticity</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Retina</subject><subject>Retina - growth & development</subject><subject>Retinal Ganglion Cells - metabolism</subject><subject>Rod Opsins - genetics</subject><subject>Rod Opsins - metabolism</subject><subject>Synaptic Transmission - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxSMEokvhzAmIhCpxSTvjjyS-VEIVhUqVOECPyHK8ztarrL3YTtH-99jaZQucLGt-M2_evKp6jXCO0NGLrVPxHAkhyAERnlQLBIFNywQ8rRYApGt6RthJ9SLGNQAI3sPz6oTQnmDH2KL6ceNSsC5araZpV2_vffLR5H-yD6ZeKbearHe1NtMUa-0LPMzJ1MnX20nFZLVNu9q6OphknZrqXyr3aRv0bFN8WT0b1RTNq8N7Wt1df_p-9aW5_fr55urjbaM5IakZmSLYc9CUsZboUREiRtHxoe015T03PY5a9JobSshgloovKTfjMAwi21BLelpd7udu52FjltrkPdUkt8FuVNhJr6z8t-LsvVz5B0k77BEwD_hwGBD8z9nEJDc2FtPKGT9HiQzKYRF5Rt__h679HLL1QiESwakoAy_2lA4-xmDG4zIIskQnS3TyMbrc8fZvD0f-T1YZODsAKua0xqCctvGR63jbckYzVx-4onCUzbpEZEEQRevNHlnH5MORYaRDwmnZ_t2-Piov1SpkmbtvBLCFfKuOA9Df-I3BOg</recordid><startdate>20130716</startdate><enddate>20130716</enddate><creator>Kirkby, Lowry A.</creator><creator>Feller, Marla B.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130716</creationdate><title>Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits</title><author>Kirkby, Lowry A. ; Feller, Marla B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-f4a21850c34462cfa229f975b68c3585e81fc98c5e322beda5d35efbbb9217ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amacrine cells</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>Cholinergics</topic><topic>Connexin 26</topic><topic>Connexins</topic><topic>Connexins - genetics</topic><topic>Connexins - metabolism</topic><topic>Correlation analysis</topic><topic>Electrophysiological Phenomena - physiology</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ganglia</topic><topic>Gap Junction delta-2 Protein</topic><topic>Gap junctions</topic><topic>Gap Junctions - metabolism</topic><topic>Light Signal Transduction - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microscopy, Interference</topic><topic>Nervous system</topic><topic>Neural conduction</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Plasticity</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Retina</topic><topic>Retina - growth & development</topic><topic>Retinal Ganglion Cells - metabolism</topic><topic>Rod Opsins - genetics</topic><topic>Rod Opsins - metabolism</topic><topic>Synaptic Transmission - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirkby, Lowry A.</creatorcontrib><creatorcontrib>Feller, Marla B.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirkby, Lowry A.</au><au>Feller, Marla B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-07-16</date><risdate>2013</risdate><volume>110</volume><issue>29</issue><spage>12090</spage><epage>12095</epage><pages>12090-12095</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal waves during the first postnatal week leads to the generation of “recovered” waves through a distinct, gap junction–mediated circuit. Unlike cholinergic waves, these recovered waves were modulated by dopaminergic and glutamatergic signaling, and required the presence of the gap junction protein connexin 36. Moreover, in contrast to cholinergic waves, recovered waves were stimulated by ambient light via activation of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The involvement of intrinsically photosensitive retinal ganglion cells in this reconfiguration of wave-generating circuits offers an avenue of retinal circuit plasticity during development that was previously unknown.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences</pub><pmid>23821744</pmid><doi>10.1073/pnas.1222150110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (29), p.12090-12095 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1411295391 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amacrine cells Animals Biological and medical sciences Biological Sciences Cells Cholinergics Connexin 26 Connexins Connexins - genetics Connexins - metabolism Correlation analysis Electrophysiological Phenomena - physiology Eye and associated structures. Visual pathways and centers. Vision Fundamental and applied biological sciences. Psychology Ganglia Gap Junction delta-2 Protein Gap junctions Gap Junctions - metabolism Light Signal Transduction - physiology Mice Mice, Inbred C57BL Mice, Knockout Microscopy, Interference Nervous system Neural conduction Neurons Neuroscience Plasticity Proteins Receptors Retina Retina - growth & development Retinal Ganglion Cells - metabolism Rod Opsins - genetics Rod Opsins - metabolism Synaptic Transmission - physiology Vertebrates: nervous system and sense organs |
title | Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsically%20photosensitive%20ganglion%20cells%20contribute%20to%20plasticity%20in%20retinal%20wave%20circuits&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kirkby,%20Lowry%20A.&rft.date=2013-07-16&rft.volume=110&rft.issue=29&rft.spage=12090&rft.epage=12095&rft.pages=12090-12095&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.1222150110&rft_dat=%3Cjstor_proqu%3E42712531%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1411295391&rft_id=info:pmid/23821744&rft_jstor_id=42712531&rfr_iscdi=true |