Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits

Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-07, Vol.110 (29), p.12090-12095
Hauptverfasser: Kirkby, Lowry A., Feller, Marla B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12095
container_issue 29
container_start_page 12090
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Kirkby, Lowry A.
Feller, Marla B.
description Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal waves during the first postnatal week leads to the generation of “recovered” waves through a distinct, gap junction–mediated circuit. Unlike cholinergic waves, these recovered waves were modulated by dopaminergic and glutamatergic signaling, and required the presence of the gap junction protein connexin 36. Moreover, in contrast to cholinergic waves, recovered waves were stimulated by ambient light via activation of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The involvement of intrinsically photosensitive retinal ganglion cells in this reconfiguration of wave-generating circuits offers an avenue of retinal circuit plasticity during development that was previously unknown.
doi_str_mv 10.1073/pnas.1222150110
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1411295391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42712531</jstor_id><sourcerecordid>42712531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-f4a21850c34462cfa229f975b68c3585e81fc98c5e322beda5d35efbbb9217ad3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEokvhzAmIhCpxSTvjjyS-VEIVhUqVOECPyHK8ztarrL3YTtH-99jaZQucLGt-M2_evKp6jXCO0NGLrVPxHAkhyAERnlQLBIFNywQ8rRYApGt6RthJ9SLGNQAI3sPz6oTQnmDH2KL6ceNSsC5araZpV2_vffLR5H-yD6ZeKbearHe1NtMUa-0LPMzJ1MnX20nFZLVNu9q6OphknZrqXyr3aRv0bFN8WT0b1RTNq8N7Wt1df_p-9aW5_fr55urjbaM5IakZmSLYc9CUsZboUREiRtHxoe015T03PY5a9JobSshgloovKTfjMAwi21BLelpd7udu52FjltrkPdUkt8FuVNhJr6z8t-LsvVz5B0k77BEwD_hwGBD8z9nEJDc2FtPKGT9HiQzKYRF5Rt__h679HLL1QiESwakoAy_2lA4-xmDG4zIIskQnS3TyMbrc8fZvD0f-T1YZODsAKua0xqCctvGR63jbckYzVx-4onCUzbpEZEEQRevNHlnH5MORYaRDwmnZ_t2-Piov1SpkmbtvBLCFfKuOA9Df-I3BOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1411295391</pqid></control><display><type>article</type><title>Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kirkby, Lowry A. ; Feller, Marla B.</creator><creatorcontrib>Kirkby, Lowry A. ; Feller, Marla B.</creatorcontrib><description>Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal waves during the first postnatal week leads to the generation of “recovered” waves through a distinct, gap junction–mediated circuit. Unlike cholinergic waves, these recovered waves were modulated by dopaminergic and glutamatergic signaling, and required the presence of the gap junction protein connexin 36. Moreover, in contrast to cholinergic waves, recovered waves were stimulated by ambient light via activation of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The involvement of intrinsically photosensitive retinal ganglion cells in this reconfiguration of wave-generating circuits offers an avenue of retinal circuit plasticity during development that was previously unknown.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1222150110</identifier><identifier>PMID: 23821744</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences</publisher><subject>Amacrine cells ; Animals ; Biological and medical sciences ; Biological Sciences ; Cells ; Cholinergics ; Connexin 26 ; Connexins ; Connexins - genetics ; Connexins - metabolism ; Correlation analysis ; Electrophysiological Phenomena - physiology ; Eye and associated structures. Visual pathways and centers. Vision ; Fundamental and applied biological sciences. Psychology ; Ganglia ; Gap Junction delta-2 Protein ; Gap junctions ; Gap Junctions - metabolism ; Light Signal Transduction - physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microscopy, Interference ; Nervous system ; Neural conduction ; Neurons ; Neuroscience ; Plasticity ; Proteins ; Receptors ; Retina ; Retina - growth &amp; development ; Retinal Ganglion Cells - metabolism ; Rod Opsins - genetics ; Rod Opsins - metabolism ; Synaptic Transmission - physiology ; Vertebrates: nervous system and sense organs</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (29), p.12090-12095</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Jul 16, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-f4a21850c34462cfa229f975b68c3585e81fc98c5e322beda5d35efbbb9217ad3</citedby><cites>FETCH-LOGICAL-c522t-f4a21850c34462cfa229f975b68c3585e81fc98c5e322beda5d35efbbb9217ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/29.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42712531$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42712531$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27566543$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23821744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirkby, Lowry A.</creatorcontrib><creatorcontrib>Feller, Marla B.</creatorcontrib><title>Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal waves during the first postnatal week leads to the generation of “recovered” waves through a distinct, gap junction–mediated circuit. Unlike cholinergic waves, these recovered waves were modulated by dopaminergic and glutamatergic signaling, and required the presence of the gap junction protein connexin 36. Moreover, in contrast to cholinergic waves, recovered waves were stimulated by ambient light via activation of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The involvement of intrinsically photosensitive retinal ganglion cells in this reconfiguration of wave-generating circuits offers an avenue of retinal circuit plasticity during development that was previously unknown.</description><subject>Amacrine cells</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>Cholinergics</subject><subject>Connexin 26</subject><subject>Connexins</subject><subject>Connexins - genetics</subject><subject>Connexins - metabolism</subject><subject>Correlation analysis</subject><subject>Electrophysiological Phenomena - physiology</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ganglia</subject><subject>Gap Junction delta-2 Protein</subject><subject>Gap junctions</subject><subject>Gap Junctions - metabolism</subject><subject>Light Signal Transduction - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microscopy, Interference</subject><subject>Nervous system</subject><subject>Neural conduction</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Plasticity</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Retina</subject><subject>Retina - growth &amp; development</subject><subject>Retinal Ganglion Cells - metabolism</subject><subject>Rod Opsins - genetics</subject><subject>Rod Opsins - metabolism</subject><subject>Synaptic Transmission - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxSMEokvhzAmIhCpxSTvjjyS-VEIVhUqVOECPyHK8ztarrL3YTtH-99jaZQucLGt-M2_evKp6jXCO0NGLrVPxHAkhyAERnlQLBIFNywQ8rRYApGt6RthJ9SLGNQAI3sPz6oTQnmDH2KL6ceNSsC5araZpV2_vffLR5H-yD6ZeKbearHe1NtMUa-0LPMzJ1MnX20nFZLVNu9q6OphknZrqXyr3aRv0bFN8WT0b1RTNq8N7Wt1df_p-9aW5_fr55urjbaM5IakZmSLYc9CUsZboUREiRtHxoe015T03PY5a9JobSshgloovKTfjMAwi21BLelpd7udu52FjltrkPdUkt8FuVNhJr6z8t-LsvVz5B0k77BEwD_hwGBD8z9nEJDc2FtPKGT9HiQzKYRF5Rt__h679HLL1QiESwakoAy_2lA4-xmDG4zIIskQnS3TyMbrc8fZvD0f-T1YZODsAKua0xqCctvGR63jbckYzVx-4onCUzbpEZEEQRevNHlnH5MORYaRDwmnZ_t2-Piov1SpkmbtvBLCFfKuOA9Df-I3BOg</recordid><startdate>20130716</startdate><enddate>20130716</enddate><creator>Kirkby, Lowry A.</creator><creator>Feller, Marla B.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130716</creationdate><title>Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits</title><author>Kirkby, Lowry A. ; Feller, Marla B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-f4a21850c34462cfa229f975b68c3585e81fc98c5e322beda5d35efbbb9217ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amacrine cells</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>Cholinergics</topic><topic>Connexin 26</topic><topic>Connexins</topic><topic>Connexins - genetics</topic><topic>Connexins - metabolism</topic><topic>Correlation analysis</topic><topic>Electrophysiological Phenomena - physiology</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ganglia</topic><topic>Gap Junction delta-2 Protein</topic><topic>Gap junctions</topic><topic>Gap Junctions - metabolism</topic><topic>Light Signal Transduction - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microscopy, Interference</topic><topic>Nervous system</topic><topic>Neural conduction</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Plasticity</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Retina</topic><topic>Retina - growth &amp; development</topic><topic>Retinal Ganglion Cells - metabolism</topic><topic>Rod Opsins - genetics</topic><topic>Rod Opsins - metabolism</topic><topic>Synaptic Transmission - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirkby, Lowry A.</creatorcontrib><creatorcontrib>Feller, Marla B.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirkby, Lowry A.</au><au>Feller, Marla B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-07-16</date><risdate>2013</risdate><volume>110</volume><issue>29</issue><spage>12090</spage><epage>12095</epage><pages>12090-12095</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal waves during the first postnatal week leads to the generation of “recovered” waves through a distinct, gap junction–mediated circuit. Unlike cholinergic waves, these recovered waves were modulated by dopaminergic and glutamatergic signaling, and required the presence of the gap junction protein connexin 36. Moreover, in contrast to cholinergic waves, recovered waves were stimulated by ambient light via activation of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The involvement of intrinsically photosensitive retinal ganglion cells in this reconfiguration of wave-generating circuits offers an avenue of retinal circuit plasticity during development that was previously unknown.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences</pub><pmid>23821744</pmid><doi>10.1073/pnas.1222150110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (29), p.12090-12095
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1411295391
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amacrine cells
Animals
Biological and medical sciences
Biological Sciences
Cells
Cholinergics
Connexin 26
Connexins
Connexins - genetics
Connexins - metabolism
Correlation analysis
Electrophysiological Phenomena - physiology
Eye and associated structures. Visual pathways and centers. Vision
Fundamental and applied biological sciences. Psychology
Ganglia
Gap Junction delta-2 Protein
Gap junctions
Gap Junctions - metabolism
Light Signal Transduction - physiology
Mice
Mice, Inbred C57BL
Mice, Knockout
Microscopy, Interference
Nervous system
Neural conduction
Neurons
Neuroscience
Plasticity
Proteins
Receptors
Retina
Retina - growth & development
Retinal Ganglion Cells - metabolism
Rod Opsins - genetics
Rod Opsins - metabolism
Synaptic Transmission - physiology
Vertebrates: nervous system and sense organs
title Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsically%20photosensitive%20ganglion%20cells%20contribute%20to%20plasticity%20in%20retinal%20wave%20circuits&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kirkby,%20Lowry%20A.&rft.date=2013-07-16&rft.volume=110&rft.issue=29&rft.spage=12090&rft.epage=12095&rft.pages=12090-12095&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.1222150110&rft_dat=%3Cjstor_proqu%3E42712531%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1411295391&rft_id=info:pmid/23821744&rft_jstor_id=42712531&rfr_iscdi=true