Mechanism and kinetics of a sodium-driven bacterial flagellar motor

The bacterial flagellar motor is a large rotary molecular machine that propels swimming bacteria, powered by a transmembrane electrochemical potential difference. It consists of an ∼50-nm rotor and up to ∼10 independent stators anchored to the cell wall. We measured torque–speed relationships of sin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-07, Vol.110 (28), p.E2544-E2551
Hauptverfasser: Lo, Chien-Jung, Sowa, Yoshiyuki, Pilizota, Teuta, Berry, Richard M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E2551
container_issue 28
container_start_page E2544
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Lo, Chien-Jung
Sowa, Yoshiyuki
Pilizota, Teuta
Berry, Richard M
description The bacterial flagellar motor is a large rotary molecular machine that propels swimming bacteria, powered by a transmembrane electrochemical potential difference. It consists of an ∼50-nm rotor and up to ∼10 independent stators anchored to the cell wall. We measured torque–speed relationships of single-stator motors under 25 different combinations of electrical and chemical potential. All 25 torque–speed curves had the same concave-down shape as fully energized wild-type motors, and each stator passes at least 37 ± 2 ions per revolution. We used the results to explore the 25-dimensional parameter space of generalized kinetic models for the motor mechanism, finding 830 parameter sets consistent with the data. Analysis of these sets showed that the motor mechanism has a “powerstroke” in either ion binding or transit; ion transit is channel-like rather than carrier-like; and the rate-limiting step in the motor cycle is ion binding at low concentration, ion transit, or release at high concentration.
doi_str_mv 10.1073/pnas.1301664110
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_1401944529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1399507663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-9fcd8c5679abcef33ad1c4ff2240d56c2d5dca38e13469b48cd3d7b93f9d215f3</originalsourceid><addsrcrecordid>eNqFkctv1DAQxi0EokvhzA0iceGSdvyMfUFCq_KQijhAz5bjx9YliRc7qcR_j6NdlseFk0fyb76Z-T6EnmO4wNDRy_1kygWmgIVgGMMDtMGgcCuYgodoA0C6VjLCztCTUu4AQHEJj9EZoZ2UgqsN2n7y9tZMsYyNmVzzLU5-jrY0KTSmKcnFZWxdjvd-anpjZ5-jGZowmJ0fBpObMc0pP0WPghmKf3Z8z9HNu6uv2w_t9ef3H7dvr1vLhZpbFayTteyU6a0PlBqHLQuBEAaOC0scd9ZQ6TFlQvVMWkdd1ysalCOYB3qO3hx090s_emf9NGcz6H2Oo8k_dDJR__0zxVu9S_eadtUs1VWB10eBnL4vvsx6jMWul0w-LUVjCbT6Jyj9P0qV4tAJsaKv_kHv0pKn6oTGDLBijBNVqcsDZXMqJftw2huDXrPUa5b6d5a148Wf5574X-FVoDkCa-dJruoRqa8IZ6wiLw9IMEmbXY5F33whdQQAphIEpj8BwRCufQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1401944529</pqid></control><display><type>article</type><title>Mechanism and kinetics of a sodium-driven bacterial flagellar motor</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lo, Chien-Jung ; Sowa, Yoshiyuki ; Pilizota, Teuta ; Berry, Richard M</creator><creatorcontrib>Lo, Chien-Jung ; Sowa, Yoshiyuki ; Pilizota, Teuta ; Berry, Richard M</creatorcontrib><description>The bacterial flagellar motor is a large rotary molecular machine that propels swimming bacteria, powered by a transmembrane electrochemical potential difference. It consists of an ∼50-nm rotor and up to ∼10 independent stators anchored to the cell wall. We measured torque–speed relationships of single-stator motors under 25 different combinations of electrical and chemical potential. All 25 torque–speed curves had the same concave-down shape as fully energized wild-type motors, and each stator passes at least 37 ± 2 ions per revolution. We used the results to explore the 25-dimensional parameter space of generalized kinetic models for the motor mechanism, finding 830 parameter sets consistent with the data. Analysis of these sets showed that the motor mechanism has a “powerstroke” in either ion binding or transit; ion transit is channel-like rather than carrier-like; and the rate-limiting step in the motor cycle is ion binding at low concentration, ion transit, or release at high concentration.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1301664110</identifier><identifier>PMID: 23788659</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria ; bacterial motility ; Bacterial Physiological Phenomena ; Biological Sciences ; cell walls ; electrochemistry ; Flagella - physiology ; Ions ; Kinetics ; Membranes ; Molecules ; PNAS Plus ; Sodium - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (28), p.E2544-E2551</ispartof><rights>Copyright National Academy of Sciences Jul 9, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-9fcd8c5679abcef33ad1c4ff2240d56c2d5dca38e13469b48cd3d7b93f9d215f3</citedby><cites>FETCH-LOGICAL-c569t-9fcd8c5679abcef33ad1c4ff2240d56c2d5dca38e13469b48cd3d7b93f9d215f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/28.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710797/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710797/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23788659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lo, Chien-Jung</creatorcontrib><creatorcontrib>Sowa, Yoshiyuki</creatorcontrib><creatorcontrib>Pilizota, Teuta</creatorcontrib><creatorcontrib>Berry, Richard M</creatorcontrib><title>Mechanism and kinetics of a sodium-driven bacterial flagellar motor</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The bacterial flagellar motor is a large rotary molecular machine that propels swimming bacteria, powered by a transmembrane electrochemical potential difference. It consists of an ∼50-nm rotor and up to ∼10 independent stators anchored to the cell wall. We measured torque–speed relationships of single-stator motors under 25 different combinations of electrical and chemical potential. All 25 torque–speed curves had the same concave-down shape as fully energized wild-type motors, and each stator passes at least 37 ± 2 ions per revolution. We used the results to explore the 25-dimensional parameter space of generalized kinetic models for the motor mechanism, finding 830 parameter sets consistent with the data. Analysis of these sets showed that the motor mechanism has a “powerstroke” in either ion binding or transit; ion transit is channel-like rather than carrier-like; and the rate-limiting step in the motor cycle is ion binding at low concentration, ion transit, or release at high concentration.</description><subject>Bacteria</subject><subject>bacterial motility</subject><subject>Bacterial Physiological Phenomena</subject><subject>Biological Sciences</subject><subject>cell walls</subject><subject>electrochemistry</subject><subject>Flagella - physiology</subject><subject>Ions</subject><subject>Kinetics</subject><subject>Membranes</subject><subject>Molecules</subject><subject>PNAS Plus</subject><subject>Sodium - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctv1DAQxi0EokvhzA0iceGSdvyMfUFCq_KQijhAz5bjx9YliRc7qcR_j6NdlseFk0fyb76Z-T6EnmO4wNDRy_1kygWmgIVgGMMDtMGgcCuYgodoA0C6VjLCztCTUu4AQHEJj9EZoZ2UgqsN2n7y9tZMsYyNmVzzLU5-jrY0KTSmKcnFZWxdjvd-anpjZ5-jGZowmJ0fBpObMc0pP0WPghmKf3Z8z9HNu6uv2w_t9ef3H7dvr1vLhZpbFayTteyU6a0PlBqHLQuBEAaOC0scd9ZQ6TFlQvVMWkdd1ysalCOYB3qO3hx090s_emf9NGcz6H2Oo8k_dDJR__0zxVu9S_eadtUs1VWB10eBnL4vvsx6jMWul0w-LUVjCbT6Jyj9P0qV4tAJsaKv_kHv0pKn6oTGDLBijBNVqcsDZXMqJftw2huDXrPUa5b6d5a148Wf5574X-FVoDkCa-dJruoRqa8IZ6wiLw9IMEmbXY5F33whdQQAphIEpj8BwRCufQ</recordid><startdate>20130709</startdate><enddate>20130709</enddate><creator>Lo, Chien-Jung</creator><creator>Sowa, Yoshiyuki</creator><creator>Pilizota, Teuta</creator><creator>Berry, Richard M</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130709</creationdate><title>Mechanism and kinetics of a sodium-driven bacterial flagellar motor</title><author>Lo, Chien-Jung ; Sowa, Yoshiyuki ; Pilizota, Teuta ; Berry, Richard M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-9fcd8c5679abcef33ad1c4ff2240d56c2d5dca38e13469b48cd3d7b93f9d215f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bacteria</topic><topic>bacterial motility</topic><topic>Bacterial Physiological Phenomena</topic><topic>Biological Sciences</topic><topic>cell walls</topic><topic>electrochemistry</topic><topic>Flagella - physiology</topic><topic>Ions</topic><topic>Kinetics</topic><topic>Membranes</topic><topic>Molecules</topic><topic>PNAS Plus</topic><topic>Sodium - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lo, Chien-Jung</creatorcontrib><creatorcontrib>Sowa, Yoshiyuki</creatorcontrib><creatorcontrib>Pilizota, Teuta</creatorcontrib><creatorcontrib>Berry, Richard M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lo, Chien-Jung</au><au>Sowa, Yoshiyuki</au><au>Pilizota, Teuta</au><au>Berry, Richard M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism and kinetics of a sodium-driven bacterial flagellar motor</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-07-09</date><risdate>2013</risdate><volume>110</volume><issue>28</issue><spage>E2544</spage><epage>E2551</epage><pages>E2544-E2551</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The bacterial flagellar motor is a large rotary molecular machine that propels swimming bacteria, powered by a transmembrane electrochemical potential difference. It consists of an ∼50-nm rotor and up to ∼10 independent stators anchored to the cell wall. We measured torque–speed relationships of single-stator motors under 25 different combinations of electrical and chemical potential. All 25 torque–speed curves had the same concave-down shape as fully energized wild-type motors, and each stator passes at least 37 ± 2 ions per revolution. We used the results to explore the 25-dimensional parameter space of generalized kinetic models for the motor mechanism, finding 830 parameter sets consistent with the data. Analysis of these sets showed that the motor mechanism has a “powerstroke” in either ion binding or transit; ion transit is channel-like rather than carrier-like; and the rate-limiting step in the motor cycle is ion binding at low concentration, ion transit, or release at high concentration.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23788659</pmid><doi>10.1073/pnas.1301664110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (28), p.E2544-E2551
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1401944529
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bacteria
bacterial motility
Bacterial Physiological Phenomena
Biological Sciences
cell walls
electrochemistry
Flagella - physiology
Ions
Kinetics
Membranes
Molecules
PNAS Plus
Sodium - physiology
title Mechanism and kinetics of a sodium-driven bacterial flagellar motor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20and%20kinetics%20of%20a%20sodium-driven%20bacterial%20flagellar%20motor&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lo,%20Chien-Jung&rft.date=2013-07-09&rft.volume=110&rft.issue=28&rft.spage=E2544&rft.epage=E2551&rft.pages=E2544-E2551&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1301664110&rft_dat=%3Cproquest_pubme%3E1399507663%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1401944529&rft_id=info:pmid/23788659&rfr_iscdi=true