Electronic structure of francium
This article presents the first calculations of the electronic structure of francium for the bcc, fcc, and hcp structures, using the linearized augmented plane wave (LAPW) method. Both the local density approximation (LDA) and generalized gradient approximation (GGA) were used to calculate the elect...
Gespeichert in:
Veröffentlicht in: | International journal of quantum chemistry 2013-09, Vol.113 (17), p.2070-2077 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2077 |
---|---|
container_issue | 17 |
container_start_page | 2070 |
container_title | International journal of quantum chemistry |
container_volume | 113 |
creator | Koufos, Alexander P. Papaconstantopoulos, Dimitrios A. |
description | This article presents the first calculations of the electronic structure of francium for the bcc, fcc, and hcp structures, using the linearized augmented plane wave (LAPW) method. Both the local density approximation (LDA) and generalized gradient approximation (GGA) were used to calculate the electronic structure and total energy of francium (Fr). The GGA and LDA both found the total energy of the hcp structure to be slightly below that of the fcc and bcc structures, respectively. This is in agreement with similar results for the other alkali metals where the bcc structure is found not to be the ground state in contradiction to experiment. The equilibrium lattice constant, bulk modulus, and superconductivity parameters were calculated. Calculations of the enthalpy of the system suggest a structural transition from hcp to bcc under a pressure of 0.57 GPa. Using the McMillan‐Gaspari‐Gyorffy theories, we found that under further pressures, in the range of 3–14 GPa, Fr could be a superconductor with critical temperature up to 7 K. This is consistent with the other alkali metals and originates from an increase of the d‐like density of states at the Fermi level, which makes the alkali metals behave like transition metals. © 2013 Wiley Periodicals, Inc.
Little is known about the properties of the heaviest alkali metal, francium. This article provides the first electronic structure study of francium while completing a systematic study of the other alkalis. Theoretically, the alkalis should become superconductors under pressure. Lithium has been the only one experimentally verified. This study suggests that the increased d‐character of the states at the Fermi level is the mechanism for superconductivity under pressure. |
doi_str_mv | 10.1002/qua.24466 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1400955732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3022900181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3356-88def3a75ee1ca62fe5cfafc7959d41f20aafe93d2cff53ac53e3da648849f9b3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQQBdRMFYP_oOAJw9pZ7Nf2WMt_RCKUmyxeFnWzS6kpk27m6D990aj3jzNYd6bgYfQNYY-BkgHh0b3U0o5P0ERBikSyvH6FEXtDhLBITtHFyFsAIATLiIUj0tral_tChOH2jembryNKxc7r3emaLaX6MzpMtirn9lDq8l4OZol88fp_Wg4TwwhjCdZlltHtGDWYqN56iwzTjsjJJM5xS4FrZ2VJE-Nc4xow4glueY0y6h08pX00E13d--rQ2NDrTZV43ftS4UpgGRMkLSlbjvK-CoEb53a-2Kr_VFhUF8BVBtAfQdo2UHHvhelPf4PqsVq-GsknVGE2n78Gdq_KS6IYOr5YarWs7sFf3qhakk-ARC6a8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400955732</pqid></control><display><type>article</type><title>Electronic structure of francium</title><source>Wiley Journals</source><creator>Koufos, Alexander P. ; Papaconstantopoulos, Dimitrios A.</creator><creatorcontrib>Koufos, Alexander P. ; Papaconstantopoulos, Dimitrios A.</creatorcontrib><description>This article presents the first calculations of the electronic structure of francium for the bcc, fcc, and hcp structures, using the linearized augmented plane wave (LAPW) method. Both the local density approximation (LDA) and generalized gradient approximation (GGA) were used to calculate the electronic structure and total energy of francium (Fr). The GGA and LDA both found the total energy of the hcp structure to be slightly below that of the fcc and bcc structures, respectively. This is in agreement with similar results for the other alkali metals where the bcc structure is found not to be the ground state in contradiction to experiment. The equilibrium lattice constant, bulk modulus, and superconductivity parameters were calculated. Calculations of the enthalpy of the system suggest a structural transition from hcp to bcc under a pressure of 0.57 GPa. Using the McMillan‐Gaspari‐Gyorffy theories, we found that under further pressures, in the range of 3–14 GPa, Fr could be a superconductor with critical temperature up to 7 K. This is consistent with the other alkali metals and originates from an increase of the d‐like density of states at the Fermi level, which makes the alkali metals behave like transition metals. © 2013 Wiley Periodicals, Inc.
Little is known about the properties of the heaviest alkali metal, francium. This article provides the first electronic structure study of francium while completing a systematic study of the other alkalis. Theoretically, the alkalis should become superconductors under pressure. Lithium has been the only one experimentally verified. This study suggests that the increased d‐character of the states at the Fermi level is the mechanism for superconductivity under pressure.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.24466</identifier><identifier>CODEN: IJQCB2</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Chemistry ; density functional theory ; electronic structure ; francium ; Physical chemistry ; Quantum physics ; superconductivity</subject><ispartof>International journal of quantum chemistry, 2013-09, Vol.113 (17), p.2070-2077</ispartof><rights>2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3356-88def3a75ee1ca62fe5cfafc7959d41f20aafe93d2cff53ac53e3da648849f9b3</citedby><cites>FETCH-LOGICAL-c3356-88def3a75ee1ca62fe5cfafc7959d41f20aafe93d2cff53ac53e3da648849f9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.24466$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.24466$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Koufos, Alexander P.</creatorcontrib><creatorcontrib>Papaconstantopoulos, Dimitrios A.</creatorcontrib><title>Electronic structure of francium</title><title>International journal of quantum chemistry</title><addtitle>Int. J. Quantum Chem</addtitle><description>This article presents the first calculations of the electronic structure of francium for the bcc, fcc, and hcp structures, using the linearized augmented plane wave (LAPW) method. Both the local density approximation (LDA) and generalized gradient approximation (GGA) were used to calculate the electronic structure and total energy of francium (Fr). The GGA and LDA both found the total energy of the hcp structure to be slightly below that of the fcc and bcc structures, respectively. This is in agreement with similar results for the other alkali metals where the bcc structure is found not to be the ground state in contradiction to experiment. The equilibrium lattice constant, bulk modulus, and superconductivity parameters were calculated. Calculations of the enthalpy of the system suggest a structural transition from hcp to bcc under a pressure of 0.57 GPa. Using the McMillan‐Gaspari‐Gyorffy theories, we found that under further pressures, in the range of 3–14 GPa, Fr could be a superconductor with critical temperature up to 7 K. This is consistent with the other alkali metals and originates from an increase of the d‐like density of states at the Fermi level, which makes the alkali metals behave like transition metals. © 2013 Wiley Periodicals, Inc.
Little is known about the properties of the heaviest alkali metal, francium. This article provides the first electronic structure study of francium while completing a systematic study of the other alkalis. Theoretically, the alkalis should become superconductors under pressure. Lithium has been the only one experimentally verified. This study suggests that the increased d‐character of the states at the Fermi level is the mechanism for superconductivity under pressure.</description><subject>Chemistry</subject><subject>density functional theory</subject><subject>electronic structure</subject><subject>francium</subject><subject>Physical chemistry</subject><subject>Quantum physics</subject><subject>superconductivity</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQQBdRMFYP_oOAJw9pZ7Nf2WMt_RCKUmyxeFnWzS6kpk27m6D990aj3jzNYd6bgYfQNYY-BkgHh0b3U0o5P0ERBikSyvH6FEXtDhLBITtHFyFsAIATLiIUj0tral_tChOH2jembryNKxc7r3emaLaX6MzpMtirn9lDq8l4OZol88fp_Wg4TwwhjCdZlltHtGDWYqN56iwzTjsjJJM5xS4FrZ2VJE-Nc4xow4glueY0y6h08pX00E13d--rQ2NDrTZV43ftS4UpgGRMkLSlbjvK-CoEb53a-2Kr_VFhUF8BVBtAfQdo2UHHvhelPf4PqsVq-GsknVGE2n78Gdq_KS6IYOr5YarWs7sFf3qhakk-ARC6a8U</recordid><startdate>20130905</startdate><enddate>20130905</enddate><creator>Koufos, Alexander P.</creator><creator>Papaconstantopoulos, Dimitrios A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130905</creationdate><title>Electronic structure of francium</title><author>Koufos, Alexander P. ; Papaconstantopoulos, Dimitrios A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3356-88def3a75ee1ca62fe5cfafc7959d41f20aafe93d2cff53ac53e3da648849f9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemistry</topic><topic>density functional theory</topic><topic>electronic structure</topic><topic>francium</topic><topic>Physical chemistry</topic><topic>Quantum physics</topic><topic>superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koufos, Alexander P.</creatorcontrib><creatorcontrib>Papaconstantopoulos, Dimitrios A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koufos, Alexander P.</au><au>Papaconstantopoulos, Dimitrios A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic structure of francium</atitle><jtitle>International journal of quantum chemistry</jtitle><addtitle>Int. J. Quantum Chem</addtitle><date>2013-09-05</date><risdate>2013</risdate><volume>113</volume><issue>17</issue><spage>2070</spage><epage>2077</epage><pages>2070-2077</pages><issn>0020-7608</issn><eissn>1097-461X</eissn><coden>IJQCB2</coden><abstract>This article presents the first calculations of the electronic structure of francium for the bcc, fcc, and hcp structures, using the linearized augmented plane wave (LAPW) method. Both the local density approximation (LDA) and generalized gradient approximation (GGA) were used to calculate the electronic structure and total energy of francium (Fr). The GGA and LDA both found the total energy of the hcp structure to be slightly below that of the fcc and bcc structures, respectively. This is in agreement with similar results for the other alkali metals where the bcc structure is found not to be the ground state in contradiction to experiment. The equilibrium lattice constant, bulk modulus, and superconductivity parameters were calculated. Calculations of the enthalpy of the system suggest a structural transition from hcp to bcc under a pressure of 0.57 GPa. Using the McMillan‐Gaspari‐Gyorffy theories, we found that under further pressures, in the range of 3–14 GPa, Fr could be a superconductor with critical temperature up to 7 K. This is consistent with the other alkali metals and originates from an increase of the d‐like density of states at the Fermi level, which makes the alkali metals behave like transition metals. © 2013 Wiley Periodicals, Inc.
Little is known about the properties of the heaviest alkali metal, francium. This article provides the first electronic structure study of francium while completing a systematic study of the other alkalis. Theoretically, the alkalis should become superconductors under pressure. Lithium has been the only one experimentally verified. This study suggests that the increased d‐character of the states at the Fermi level is the mechanism for superconductivity under pressure.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/qua.24466</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7608 |
ispartof | International journal of quantum chemistry, 2013-09, Vol.113 (17), p.2070-2077 |
issn | 0020-7608 1097-461X |
language | eng |
recordid | cdi_proquest_journals_1400955732 |
source | Wiley Journals |
subjects | Chemistry density functional theory electronic structure francium Physical chemistry Quantum physics superconductivity |
title | Electronic structure of francium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20structure%20of%20francium&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Koufos,%20Alexander%20P.&rft.date=2013-09-05&rft.volume=113&rft.issue=17&rft.spage=2070&rft.epage=2077&rft.pages=2070-2077&rft.issn=0020-7608&rft.eissn=1097-461X&rft.coden=IJQCB2&rft_id=info:doi/10.1002/qua.24466&rft_dat=%3Cproquest_cross%3E3022900181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1400955732&rft_id=info:pmid/&rfr_iscdi=true |