AUGMENTING UNDIRECTED NODE-CONNECTIVITY BY ONE

We present a min-max formula for the problem of augmenting the node-connectivity of a graph by one and give a polynomial time algorithm for finding an optimal solution. We also solve the minimum-cost version for node-induced cost functions. [PUBLICATION ABSTRACT]

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 2011-01, Vol.25 (1-2), p.695-718
1. Verfasser: VEGH, Laszlo A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 718
container_issue 1-2
container_start_page 695
container_title SIAM journal on discrete mathematics
container_volume 25
creator VEGH, Laszlo A
description We present a min-max formula for the problem of augmenting the node-connectivity of a graph by one and give a polynomial time algorithm for finding an optimal solution. We also solve the minimum-cost version for node-induced cost functions. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/100787507
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1372742792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3009047201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-c7e4215b7c5f6e4d80428ff42851b252198cf83837940341f754a3861bc817e53</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFYX_oOAuHCReu88OpNlTWIN1AlIInQVpmMGWmpbZ9qF_96Rlm7uA757DvcQco8wQmTyGQGkkgLkBRkgZCKVyMeXZAAqzlwBXpObEFYAyDmKARlN2ul7qZtKT5NWF9VHmTdlkei6KNO81jqu1WfVzJOXeVLr8pZcObMO_d2pD0n7Wjb5Wzqrp1U-maWWCbZPrew5RbGQVrhxz78UcKqci0XgggqKmbJOMcVkxoFxdFJww9QYF1ah7AUbkoej7s5vfw592Her7cFvomUXv6SSU5nRSD0dKeu3IfjedTu__Db-t0Po_uPoznFE9vGkaII1a-fNxi7D-YByQSHLBPsDXqtWqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372742792</pqid></control><display><type>article</type><title>AUGMENTING UNDIRECTED NODE-CONNECTIVITY BY ONE</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>VEGH, Laszlo A</creator><creatorcontrib>VEGH, Laszlo A</creatorcontrib><description>We present a min-max formula for the problem of augmenting the node-connectivity of a graph by one and give a polynomial time algorithm for finding an optimal solution. We also solve the minimum-cost version for node-induced cost functions. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0895-4801</identifier><identifier>EISSN: 1095-7146</identifier><identifier>DOI: 10.1137/100787507</identifier><identifier>CODEN: SJDMEC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Algorithms ; Calculus of variations and optimal control ; Combinatorics ; Combinatorics. Ordered structures ; Connectivity ; Exact sciences and technology ; Graph theory ; Graphs ; Mathematical analysis ; Mathematics ; Sciences and techniques of general use</subject><ispartof>SIAM journal on discrete mathematics, 2011-01, Vol.25 (1-2), p.695-718</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-c7e4215b7c5f6e4d80428ff42851b252198cf83837940341f754a3861bc817e53</citedby><cites>FETCH-LOGICAL-c353t-c7e4215b7c5f6e4d80428ff42851b252198cf83837940341f754a3861bc817e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3172,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24520995$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VEGH, Laszlo A</creatorcontrib><title>AUGMENTING UNDIRECTED NODE-CONNECTIVITY BY ONE</title><title>SIAM journal on discrete mathematics</title><description>We present a min-max formula for the problem of augmenting the node-connectivity of a graph by one and give a polynomial time algorithm for finding an optimal solution. We also solve the minimum-cost version for node-induced cost functions. [PUBLICATION ABSTRACT]</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Calculus of variations and optimal control</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Connectivity</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><issn>0895-4801</issn><issn>1095-7146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEtLw0AUhQdRsFYX_oOAuHCReu88OpNlTWIN1AlIInQVpmMGWmpbZ9qF_96Rlm7uA757DvcQco8wQmTyGQGkkgLkBRkgZCKVyMeXZAAqzlwBXpObEFYAyDmKARlN2ul7qZtKT5NWF9VHmTdlkei6KNO81jqu1WfVzJOXeVLr8pZcObMO_d2pD0n7Wjb5Wzqrp1U-maWWCbZPrew5RbGQVrhxz78UcKqci0XgggqKmbJOMcVkxoFxdFJww9QYF1ah7AUbkoej7s5vfw592Her7cFvomUXv6SSU5nRSD0dKeu3IfjedTu__Db-t0Po_uPoznFE9vGkaII1a-fNxi7D-YByQSHLBPsDXqtWqQ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>VEGH, Laszlo A</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20110101</creationdate><title>AUGMENTING UNDIRECTED NODE-CONNECTIVITY BY ONE</title><author>VEGH, Laszlo A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-c7e4215b7c5f6e4d80428ff42851b252198cf83837940341f754a3861bc817e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Calculus of variations and optimal control</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Connectivity</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VEGH, Laszlo A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VEGH, Laszlo A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AUGMENTING UNDIRECTED NODE-CONNECTIVITY BY ONE</atitle><jtitle>SIAM journal on discrete mathematics</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>25</volume><issue>1-2</issue><spage>695</spage><epage>718</epage><pages>695-718</pages><issn>0895-4801</issn><eissn>1095-7146</eissn><coden>SJDMEC</coden><abstract>We present a min-max formula for the problem of augmenting the node-connectivity of a graph by one and give a polynomial time algorithm for finding an optimal solution. We also solve the minimum-cost version for node-induced cost functions. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100787507</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-4801
ispartof SIAM journal on discrete mathematics, 2011-01, Vol.25 (1-2), p.695-718
issn 0895-4801
1095-7146
language eng
recordid cdi_proquest_journals_1372742792
source LOCUS - SIAM's Online Journal Archive
subjects Algebra
Algorithms
Calculus of variations and optimal control
Combinatorics
Combinatorics. Ordered structures
Connectivity
Exact sciences and technology
Graph theory
Graphs
Mathematical analysis
Mathematics
Sciences and techniques of general use
title AUGMENTING UNDIRECTED NODE-CONNECTIVITY BY ONE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AUGMENTING%20UNDIRECTED%20NODE-CONNECTIVITY%20BY%20ONE&rft.jtitle=SIAM%20journal%20on%20discrete%20mathematics&rft.au=VEGH,%20Laszlo%20A&rft.date=2011-01-01&rft.volume=25&rft.issue=1-2&rft.spage=695&rft.epage=718&rft.pages=695-718&rft.issn=0895-4801&rft.eissn=1095-7146&rft.coden=SJDMEC&rft_id=info:doi/10.1137/100787507&rft_dat=%3Cproquest_cross%3E3009047201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372742792&rft_id=info:pmid/&rfr_iscdi=true