A Multi-Sensor Energy Theft Detection Framework for Advanced Metering Infrastructures

The advanced metering infrastructure (AMI) is a crucial component of the smart grid, replacing traditional analog devices with computerized smart meters. Smart meters have not only allowed for efficient management of many end-users, but also have made AMI an attractive target for remote exploits and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2013-07, Vol.31 (7), p.1319-1330
Hauptverfasser: McLaughlin, S., Holbert, B., Fawaz, A., Berthier, R., Zonouz, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1330
container_issue 7
container_start_page 1319
container_title IEEE journal on selected areas in communications
container_volume 31
creator McLaughlin, S.
Holbert, B.
Fawaz, A.
Berthier, R.
Zonouz, S.
description The advanced metering infrastructure (AMI) is a crucial component of the smart grid, replacing traditional analog devices with computerized smart meters. Smart meters have not only allowed for efficient management of many end-users, but also have made AMI an attractive target for remote exploits and local physical tampering with the end goal of stealing energy. While smart meters posses multiple sensors and data sources that can indicate energy theft, in practice, the individual methods exhibit many false positives. In this paper, we present AMIDS, an AMI intrusion detection system that uses information fusion to combine the sensors and consumption data from a smart meter to more accurately detect energy theft. AMIDS combines meter audit logs of physical and cyber events with consumption data to more accurately model and detect theft-related behavior. Our experimental results on normal and anomalous load profiles show that AMIDS can identify energy theft efforts with high accuracy. Furthermore, AMIDS correctly identified legitimate load profile changes that more elementary analyses classified as malicious.
doi_str_mv 10.1109/JSAC.2013.130714
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1372306073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6547839</ieee_id><sourcerecordid>3007759921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-16c9147eab1e5826b7a5d7053bc676a35472739b988838e714e64c9a4878555a3</originalsourceid><addsrcrecordid>eNpdkDFPwzAQhS0EEqWwI7FEYmFJ8cVx7IxRaaGoFUPb2XLcS0lpk2I7oP57EgUxMN3yvad3HyG3QEcANH18XWbjUUSBjYBRAfEZGQDnMqSUynMyoIKxUApILsmVcztKIY5lNCDrLFg0e1-GS6xcbYNJhXZ7ClbvWPjgCT0aX9ZVMLX6gN-1_QiKFso2X7oyuAkWLWDLahvMqsJq521jfGPRXZOLQu8d3vzeIVlPJ6vxSzh_e56Ns3lomAAfQmJSiAXqHJDLKMmF5htBOctNIhLNeCwiwdI8lVIyie1XmMQm1bEUknOu2ZA89L1HW3826Lw6lM7gfq8rrBunIAYhU0ZTaNH7f-iubmzVrlPARMRo0ikaEtpTxtbOWSzU0ZYHbU8KqOo8q86z6jyr3nMbuesjJSL-4Um7XbKU_QA923cz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372306073</pqid></control><display><type>article</type><title>A Multi-Sensor Energy Theft Detection Framework for Advanced Metering Infrastructures</title><source>IEEE Electronic Library (IEL)</source><creator>McLaughlin, S. ; Holbert, B. ; Fawaz, A. ; Berthier, R. ; Zonouz, S.</creator><creatorcontrib>McLaughlin, S. ; Holbert, B. ; Fawaz, A. ; Berthier, R. ; Zonouz, S.</creatorcontrib><description>The advanced metering infrastructure (AMI) is a crucial component of the smart grid, replacing traditional analog devices with computerized smart meters. Smart meters have not only allowed for efficient management of many end-users, but also have made AMI an attractive target for remote exploits and local physical tampering with the end goal of stealing energy. While smart meters posses multiple sensors and data sources that can indicate energy theft, in practice, the individual methods exhibit many false positives. In this paper, we present AMIDS, an AMI intrusion detection system that uses information fusion to combine the sensors and consumption data from a smart meter to more accurately detect energy theft. AMIDS combines meter audit logs of physical and cyber events with consumption data to more accurately model and detect theft-related behavior. Our experimental results on normal and anomalous load profiles show that AMIDS can identify energy theft efforts with high accuracy. Furthermore, AMIDS correctly identified legitimate load profile changes that more elementary analyses classified as malicious.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2013.130714</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>advanced metering infrastructures ; Devices ; Energy management ; Home appliances ; Image edge detection ; Infrastructure ; intrusion alert correlation ; intrusion and energy theft detection ; Intrusion detection ; Intrusion detection systems ; Load modeling ; Measuring instruments ; Metering ; Meters ; Monitoring ; multi-sensor inference and information fusion ; Power grid critical infrastructures ; Power measurement ; Sensors ; Studies ; Theft</subject><ispartof>IEEE journal on selected areas in communications, 2013-07, Vol.31 (7), p.1319-1330</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-16c9147eab1e5826b7a5d7053bc676a35472739b988838e714e64c9a4878555a3</citedby><cites>FETCH-LOGICAL-c371t-16c9147eab1e5826b7a5d7053bc676a35472739b988838e714e64c9a4878555a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6547839$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6547839$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McLaughlin, S.</creatorcontrib><creatorcontrib>Holbert, B.</creatorcontrib><creatorcontrib>Fawaz, A.</creatorcontrib><creatorcontrib>Berthier, R.</creatorcontrib><creatorcontrib>Zonouz, S.</creatorcontrib><title>A Multi-Sensor Energy Theft Detection Framework for Advanced Metering Infrastructures</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>The advanced metering infrastructure (AMI) is a crucial component of the smart grid, replacing traditional analog devices with computerized smart meters. Smart meters have not only allowed for efficient management of many end-users, but also have made AMI an attractive target for remote exploits and local physical tampering with the end goal of stealing energy. While smart meters posses multiple sensors and data sources that can indicate energy theft, in practice, the individual methods exhibit many false positives. In this paper, we present AMIDS, an AMI intrusion detection system that uses information fusion to combine the sensors and consumption data from a smart meter to more accurately detect energy theft. AMIDS combines meter audit logs of physical and cyber events with consumption data to more accurately model and detect theft-related behavior. Our experimental results on normal and anomalous load profiles show that AMIDS can identify energy theft efforts with high accuracy. Furthermore, AMIDS correctly identified legitimate load profile changes that more elementary analyses classified as malicious.</description><subject>advanced metering infrastructures</subject><subject>Devices</subject><subject>Energy management</subject><subject>Home appliances</subject><subject>Image edge detection</subject><subject>Infrastructure</subject><subject>intrusion alert correlation</subject><subject>intrusion and energy theft detection</subject><subject>Intrusion detection</subject><subject>Intrusion detection systems</subject><subject>Load modeling</subject><subject>Measuring instruments</subject><subject>Metering</subject><subject>Meters</subject><subject>Monitoring</subject><subject>multi-sensor inference and information fusion</subject><subject>Power grid critical infrastructures</subject><subject>Power measurement</subject><subject>Sensors</subject><subject>Studies</subject><subject>Theft</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDFPwzAQhS0EEqWwI7FEYmFJ8cVx7IxRaaGoFUPb2XLcS0lpk2I7oP57EgUxMN3yvad3HyG3QEcANH18XWbjUUSBjYBRAfEZGQDnMqSUynMyoIKxUApILsmVcztKIY5lNCDrLFg0e1-GS6xcbYNJhXZ7ClbvWPjgCT0aX9ZVMLX6gN-1_QiKFso2X7oyuAkWLWDLahvMqsJq521jfGPRXZOLQu8d3vzeIVlPJ6vxSzh_e56Ns3lomAAfQmJSiAXqHJDLKMmF5htBOctNIhLNeCwiwdI8lVIyie1XmMQm1bEUknOu2ZA89L1HW3826Lw6lM7gfq8rrBunIAYhU0ZTaNH7f-iubmzVrlPARMRo0ikaEtpTxtbOWSzU0ZYHbU8KqOo8q86z6jyr3nMbuesjJSL-4Um7XbKU_QA923cz</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>McLaughlin, S.</creator><creator>Holbert, B.</creator><creator>Fawaz, A.</creator><creator>Berthier, R.</creator><creator>Zonouz, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130701</creationdate><title>A Multi-Sensor Energy Theft Detection Framework for Advanced Metering Infrastructures</title><author>McLaughlin, S. ; Holbert, B. ; Fawaz, A. ; Berthier, R. ; Zonouz, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-16c9147eab1e5826b7a5d7053bc676a35472739b988838e714e64c9a4878555a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>advanced metering infrastructures</topic><topic>Devices</topic><topic>Energy management</topic><topic>Home appliances</topic><topic>Image edge detection</topic><topic>Infrastructure</topic><topic>intrusion alert correlation</topic><topic>intrusion and energy theft detection</topic><topic>Intrusion detection</topic><topic>Intrusion detection systems</topic><topic>Load modeling</topic><topic>Measuring instruments</topic><topic>Metering</topic><topic>Meters</topic><topic>Monitoring</topic><topic>multi-sensor inference and information fusion</topic><topic>Power grid critical infrastructures</topic><topic>Power measurement</topic><topic>Sensors</topic><topic>Studies</topic><topic>Theft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLaughlin, S.</creatorcontrib><creatorcontrib>Holbert, B.</creatorcontrib><creatorcontrib>Fawaz, A.</creatorcontrib><creatorcontrib>Berthier, R.</creatorcontrib><creatorcontrib>Zonouz, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McLaughlin, S.</au><au>Holbert, B.</au><au>Fawaz, A.</au><au>Berthier, R.</au><au>Zonouz, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Sensor Energy Theft Detection Framework for Advanced Metering Infrastructures</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>31</volume><issue>7</issue><spage>1319</spage><epage>1330</epage><pages>1319-1330</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>The advanced metering infrastructure (AMI) is a crucial component of the smart grid, replacing traditional analog devices with computerized smart meters. Smart meters have not only allowed for efficient management of many end-users, but also have made AMI an attractive target for remote exploits and local physical tampering with the end goal of stealing energy. While smart meters posses multiple sensors and data sources that can indicate energy theft, in practice, the individual methods exhibit many false positives. In this paper, we present AMIDS, an AMI intrusion detection system that uses information fusion to combine the sensors and consumption data from a smart meter to more accurately detect energy theft. AMIDS combines meter audit logs of physical and cyber events with consumption data to more accurately model and detect theft-related behavior. Our experimental results on normal and anomalous load profiles show that AMIDS can identify energy theft efforts with high accuracy. Furthermore, AMIDS correctly identified legitimate load profile changes that more elementary analyses classified as malicious.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2013.130714</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2013-07, Vol.31 (7), p.1319-1330
issn 0733-8716
1558-0008
language eng
recordid cdi_proquest_journals_1372306073
source IEEE Electronic Library (IEL)
subjects advanced metering infrastructures
Devices
Energy management
Home appliances
Image edge detection
Infrastructure
intrusion alert correlation
intrusion and energy theft detection
Intrusion detection
Intrusion detection systems
Load modeling
Measuring instruments
Metering
Meters
Monitoring
multi-sensor inference and information fusion
Power grid critical infrastructures
Power measurement
Sensors
Studies
Theft
title A Multi-Sensor Energy Theft Detection Framework for Advanced Metering Infrastructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Sensor%20Energy%20Theft%20Detection%20Framework%20for%20Advanced%20Metering%20Infrastructures&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=McLaughlin,%20S.&rft.date=2013-07-01&rft.volume=31&rft.issue=7&rft.spage=1319&rft.epage=1330&rft.pages=1319-1330&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2013.130714&rft_dat=%3Cproquest_RIE%3E3007759921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372306073&rft_id=info:pmid/&rft_ieee_id=6547839&rfr_iscdi=true