Impulsive Noise Mitigation in Powerline Communications Using Sparse Bayesian Learning
Asynchronous impulsive noise and periodic impulsive noises limit communication performance in OFDM powerline communication systems. Conventional OFDM receivers that assume additive white Gaussian noise experience degradation in communication performance in impulsive noise. Alternate designs assume a...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2013-07, Vol.31 (7), p.1172-1183 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1183 |
---|---|
container_issue | 7 |
container_start_page | 1172 |
container_title | IEEE journal on selected areas in communications |
container_volume | 31 |
creator | Jing Lin Nassar, M. Evans, B. L. |
description | Asynchronous impulsive noise and periodic impulsive noises limit communication performance in OFDM powerline communication systems. Conventional OFDM receivers that assume additive white Gaussian noise experience degradation in communication performance in impulsive noise. Alternate designs assume a statistical noise model and use the model parameters in mitigating impulsive noise. These receivers require training overhead for parameter estimation, and degrade due to model and parameter mismatch. To mitigate asynchronous impulsive noise, we exploit its sparsity in the time domain, and apply sparse Bayesian learning methods to estimate and subtract the noise impulses. We propose three iterative algorithms with different complexity vs. performance trade-offs: (1) we utilize the noise projection onto null and pilot tones; (2) we add the information in the date tones to perform joint noise estimation and symbol detection; (3) we use decision feedback from the decoder to further enhance the accuracy of noise estimation. These algorithms are also embedded in a time-domain block interleaving OFDM system to mitigate periodic impulsive noise. Compared to conventional OFDM receivers, the proposed methods achieve SNR gains of up to 9 dB in coded and 10 dB in uncoded systems in asynchronous impulsive noise, and up to 6 dB in coded systems in periodic impulsive noise. |
doi_str_mv | 10.1109/JSAC.2013.130702 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1372305850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6547827</ieee_id><sourcerecordid>3007759701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-a731513a5ed0e1e33bbe9bc79baef93f74770f84c2bf71b1dfc8c3149076a38d3</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEuWxR2ITiQ2blJlMUttLqHiqPCTo2nLSCTJKnGI3IP6elCIWrGZxz70aHSGOEMaIoM_uns-n4wyQxkggIdsSIywKlQKA2hYjkESpkjjZFXsxvgFgnqtsJOa37bJvovvg5KFzkZN7t3KvduU6nzifPHWfHBrnOZl2bdt7V_1EMZlH51-T56UNQ-fCfnF01icztsEPwYHYqW0T-fD37ov51eXL9CadPV7fTs9naUUaVqmVhAWSLXgBjExUlqzLSurScq2plrmUUKu8yspaYomLulIVYa5BTiypBe2L083uMnTvPceVaV2suGms566PBnOUGjPSekBP_qFvXR_88J1BkhlBoQoYKNhQVehiDFybZXCtDV8Gwaw9m7Vns_ZsNp6HyvGm4pj5D58UuVSZpG8uxnlP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372305850</pqid></control><display><type>article</type><title>Impulsive Noise Mitigation in Powerline Communications Using Sparse Bayesian Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Jing Lin ; Nassar, M. ; Evans, B. L.</creator><creatorcontrib>Jing Lin ; Nassar, M. ; Evans, B. L.</creatorcontrib><description>Asynchronous impulsive noise and periodic impulsive noises limit communication performance in OFDM powerline communication systems. Conventional OFDM receivers that assume additive white Gaussian noise experience degradation in communication performance in impulsive noise. Alternate designs assume a statistical noise model and use the model parameters in mitigating impulsive noise. These receivers require training overhead for parameter estimation, and degrade due to model and parameter mismatch. To mitigate asynchronous impulsive noise, we exploit its sparsity in the time domain, and apply sparse Bayesian learning methods to estimate and subtract the noise impulses. We propose three iterative algorithms with different complexity vs. performance trade-offs: (1) we utilize the noise projection onto null and pilot tones; (2) we add the information in the date tones to perform joint noise estimation and symbol detection; (3) we use decision feedback from the decoder to further enhance the accuracy of noise estimation. These algorithms are also embedded in a time-domain block interleaving OFDM system to mitigate periodic impulsive noise. Compared to conventional OFDM receivers, the proposed methods achieve SNR gains of up to 9 dB in coded and 10 dB in uncoded systems in asynchronous impulsive noise, and up to 6 dB in coded systems in periodic impulsive noise.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2013.130702</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Asynchronous impulsive noise ; Bayes methods ; Bayesian analysis ; Degradation ; Discrete Fourier transforms ; Learning ; Mathematical models ; Niobium ; Noise ; Noise levels ; OFDM ; periodic impulsive noise ; PLC ; Receivers ; sparse Bayesian learning ; Studies ; Time-domain analysis</subject><ispartof>IEEE journal on selected areas in communications, 2013-07, Vol.31 (7), p.1172-1183</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-a731513a5ed0e1e33bbe9bc79baef93f74770f84c2bf71b1dfc8c3149076a38d3</citedby><cites>FETCH-LOGICAL-c390t-a731513a5ed0e1e33bbe9bc79baef93f74770f84c2bf71b1dfc8c3149076a38d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6547827$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6547827$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jing Lin</creatorcontrib><creatorcontrib>Nassar, M.</creatorcontrib><creatorcontrib>Evans, B. L.</creatorcontrib><title>Impulsive Noise Mitigation in Powerline Communications Using Sparse Bayesian Learning</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Asynchronous impulsive noise and periodic impulsive noises limit communication performance in OFDM powerline communication systems. Conventional OFDM receivers that assume additive white Gaussian noise experience degradation in communication performance in impulsive noise. Alternate designs assume a statistical noise model and use the model parameters in mitigating impulsive noise. These receivers require training overhead for parameter estimation, and degrade due to model and parameter mismatch. To mitigate asynchronous impulsive noise, we exploit its sparsity in the time domain, and apply sparse Bayesian learning methods to estimate and subtract the noise impulses. We propose three iterative algorithms with different complexity vs. performance trade-offs: (1) we utilize the noise projection onto null and pilot tones; (2) we add the information in the date tones to perform joint noise estimation and symbol detection; (3) we use decision feedback from the decoder to further enhance the accuracy of noise estimation. These algorithms are also embedded in a time-domain block interleaving OFDM system to mitigate periodic impulsive noise. Compared to conventional OFDM receivers, the proposed methods achieve SNR gains of up to 9 dB in coded and 10 dB in uncoded systems in asynchronous impulsive noise, and up to 6 dB in coded systems in periodic impulsive noise.</description><subject>Algorithms</subject><subject>Asynchronous impulsive noise</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Degradation</subject><subject>Discrete Fourier transforms</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Niobium</subject><subject>Noise</subject><subject>Noise levels</subject><subject>OFDM</subject><subject>periodic impulsive noise</subject><subject>PLC</subject><subject>Receivers</subject><subject>sparse Bayesian learning</subject><subject>Studies</subject><subject>Time-domain analysis</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRS0EEuWxR2ITiQ2blJlMUttLqHiqPCTo2nLSCTJKnGI3IP6elCIWrGZxz70aHSGOEMaIoM_uns-n4wyQxkggIdsSIywKlQKA2hYjkESpkjjZFXsxvgFgnqtsJOa37bJvovvg5KFzkZN7t3KvduU6nzifPHWfHBrnOZl2bdt7V_1EMZlH51-T56UNQ-fCfnF01icztsEPwYHYqW0T-fD37ov51eXL9CadPV7fTs9naUUaVqmVhAWSLXgBjExUlqzLSurScq2plrmUUKu8yspaYomLulIVYa5BTiypBe2L083uMnTvPceVaV2suGms566PBnOUGjPSekBP_qFvXR_88J1BkhlBoQoYKNhQVehiDFybZXCtDV8Gwaw9m7Vns_ZsNp6HyvGm4pj5D58UuVSZpG8uxnlP</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Jing Lin</creator><creator>Nassar, M.</creator><creator>Evans, B. L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130701</creationdate><title>Impulsive Noise Mitigation in Powerline Communications Using Sparse Bayesian Learning</title><author>Jing Lin ; Nassar, M. ; Evans, B. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-a731513a5ed0e1e33bbe9bc79baef93f74770f84c2bf71b1dfc8c3149076a38d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Asynchronous impulsive noise</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Degradation</topic><topic>Discrete Fourier transforms</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Niobium</topic><topic>Noise</topic><topic>Noise levels</topic><topic>OFDM</topic><topic>periodic impulsive noise</topic><topic>PLC</topic><topic>Receivers</topic><topic>sparse Bayesian learning</topic><topic>Studies</topic><topic>Time-domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing Lin</creatorcontrib><creatorcontrib>Nassar, M.</creatorcontrib><creatorcontrib>Evans, B. L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jing Lin</au><au>Nassar, M.</au><au>Evans, B. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impulsive Noise Mitigation in Powerline Communications Using Sparse Bayesian Learning</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>31</volume><issue>7</issue><spage>1172</spage><epage>1183</epage><pages>1172-1183</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Asynchronous impulsive noise and periodic impulsive noises limit communication performance in OFDM powerline communication systems. Conventional OFDM receivers that assume additive white Gaussian noise experience degradation in communication performance in impulsive noise. Alternate designs assume a statistical noise model and use the model parameters in mitigating impulsive noise. These receivers require training overhead for parameter estimation, and degrade due to model and parameter mismatch. To mitigate asynchronous impulsive noise, we exploit its sparsity in the time domain, and apply sparse Bayesian learning methods to estimate and subtract the noise impulses. We propose three iterative algorithms with different complexity vs. performance trade-offs: (1) we utilize the noise projection onto null and pilot tones; (2) we add the information in the date tones to perform joint noise estimation and symbol detection; (3) we use decision feedback from the decoder to further enhance the accuracy of noise estimation. These algorithms are also embedded in a time-domain block interleaving OFDM system to mitigate periodic impulsive noise. Compared to conventional OFDM receivers, the proposed methods achieve SNR gains of up to 9 dB in coded and 10 dB in uncoded systems in asynchronous impulsive noise, and up to 6 dB in coded systems in periodic impulsive noise.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2013.130702</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2013-07, Vol.31 (7), p.1172-1183 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_proquest_journals_1372305850 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Asynchronous impulsive noise Bayes methods Bayesian analysis Degradation Discrete Fourier transforms Learning Mathematical models Niobium Noise Noise levels OFDM periodic impulsive noise PLC Receivers sparse Bayesian learning Studies Time-domain analysis |
title | Impulsive Noise Mitigation in Powerline Communications Using Sparse Bayesian Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impulsive%20Noise%20Mitigation%20in%20Powerline%20Communications%20Using%20Sparse%20Bayesian%20Learning&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Jing%20Lin&rft.date=2013-07-01&rft.volume=31&rft.issue=7&rft.spage=1172&rft.epage=1183&rft.pages=1172-1183&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2013.130702&rft_dat=%3Cproquest_RIE%3E3007759701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372305850&rft_id=info:pmid/&rft_ieee_id=6547827&rfr_iscdi=true |