Impulsive Noise Mitigation in Powerline Communications Using Sparse Bayesian Learning

Asynchronous impulsive noise and periodic impulsive noises limit communication performance in OFDM powerline communication systems. Conventional OFDM receivers that assume additive white Gaussian noise experience degradation in communication performance in impulsive noise. Alternate designs assume a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2013-07, Vol.31 (7), p.1172-1183
Hauptverfasser: Jing Lin, Nassar, M., Evans, B. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1183
container_issue 7
container_start_page 1172
container_title IEEE journal on selected areas in communications
container_volume 31
creator Jing Lin
Nassar, M.
Evans, B. L.
description Asynchronous impulsive noise and periodic impulsive noises limit communication performance in OFDM powerline communication systems. Conventional OFDM receivers that assume additive white Gaussian noise experience degradation in communication performance in impulsive noise. Alternate designs assume a statistical noise model and use the model parameters in mitigating impulsive noise. These receivers require training overhead for parameter estimation, and degrade due to model and parameter mismatch. To mitigate asynchronous impulsive noise, we exploit its sparsity in the time domain, and apply sparse Bayesian learning methods to estimate and subtract the noise impulses. We propose three iterative algorithms with different complexity vs. performance trade-offs: (1) we utilize the noise projection onto null and pilot tones; (2) we add the information in the date tones to perform joint noise estimation and symbol detection; (3) we use decision feedback from the decoder to further enhance the accuracy of noise estimation. These algorithms are also embedded in a time-domain block interleaving OFDM system to mitigate periodic impulsive noise. Compared to conventional OFDM receivers, the proposed methods achieve SNR gains of up to 9 dB in coded and 10 dB in uncoded systems in asynchronous impulsive noise, and up to 6 dB in coded systems in periodic impulsive noise.
doi_str_mv 10.1109/JSAC.2013.130702
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1372305850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6547827</ieee_id><sourcerecordid>3007759701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-a731513a5ed0e1e33bbe9bc79baef93f74770f84c2bf71b1dfc8c3149076a38d3</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEuWxR2ITiQ2blJlMUttLqHiqPCTo2nLSCTJKnGI3IP6elCIWrGZxz70aHSGOEMaIoM_uns-n4wyQxkggIdsSIywKlQKA2hYjkESpkjjZFXsxvgFgnqtsJOa37bJvovvg5KFzkZN7t3KvduU6nzifPHWfHBrnOZl2bdt7V_1EMZlH51-T56UNQ-fCfnF01icztsEPwYHYqW0T-fD37ov51eXL9CadPV7fTs9naUUaVqmVhAWSLXgBjExUlqzLSurScq2plrmUUKu8yspaYomLulIVYa5BTiypBe2L083uMnTvPceVaV2suGms566PBnOUGjPSekBP_qFvXR_88J1BkhlBoQoYKNhQVehiDFybZXCtDV8Gwaw9m7Vns_ZsNp6HyvGm4pj5D58UuVSZpG8uxnlP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372305850</pqid></control><display><type>article</type><title>Impulsive Noise Mitigation in Powerline Communications Using Sparse Bayesian Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Jing Lin ; Nassar, M. ; Evans, B. L.</creator><creatorcontrib>Jing Lin ; Nassar, M. ; Evans, B. L.</creatorcontrib><description>Asynchronous impulsive noise and periodic impulsive noises limit communication performance in OFDM powerline communication systems. Conventional OFDM receivers that assume additive white Gaussian noise experience degradation in communication performance in impulsive noise. Alternate designs assume a statistical noise model and use the model parameters in mitigating impulsive noise. These receivers require training overhead for parameter estimation, and degrade due to model and parameter mismatch. To mitigate asynchronous impulsive noise, we exploit its sparsity in the time domain, and apply sparse Bayesian learning methods to estimate and subtract the noise impulses. We propose three iterative algorithms with different complexity vs. performance trade-offs: (1) we utilize the noise projection onto null and pilot tones; (2) we add the information in the date tones to perform joint noise estimation and symbol detection; (3) we use decision feedback from the decoder to further enhance the accuracy of noise estimation. These algorithms are also embedded in a time-domain block interleaving OFDM system to mitigate periodic impulsive noise. Compared to conventional OFDM receivers, the proposed methods achieve SNR gains of up to 9 dB in coded and 10 dB in uncoded systems in asynchronous impulsive noise, and up to 6 dB in coded systems in periodic impulsive noise.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2013.130702</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Asynchronous impulsive noise ; Bayes methods ; Bayesian analysis ; Degradation ; Discrete Fourier transforms ; Learning ; Mathematical models ; Niobium ; Noise ; Noise levels ; OFDM ; periodic impulsive noise ; PLC ; Receivers ; sparse Bayesian learning ; Studies ; Time-domain analysis</subject><ispartof>IEEE journal on selected areas in communications, 2013-07, Vol.31 (7), p.1172-1183</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-a731513a5ed0e1e33bbe9bc79baef93f74770f84c2bf71b1dfc8c3149076a38d3</citedby><cites>FETCH-LOGICAL-c390t-a731513a5ed0e1e33bbe9bc79baef93f74770f84c2bf71b1dfc8c3149076a38d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6547827$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6547827$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jing Lin</creatorcontrib><creatorcontrib>Nassar, M.</creatorcontrib><creatorcontrib>Evans, B. L.</creatorcontrib><title>Impulsive Noise Mitigation in Powerline Communications Using Sparse Bayesian Learning</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Asynchronous impulsive noise and periodic impulsive noises limit communication performance in OFDM powerline communication systems. Conventional OFDM receivers that assume additive white Gaussian noise experience degradation in communication performance in impulsive noise. Alternate designs assume a statistical noise model and use the model parameters in mitigating impulsive noise. These receivers require training overhead for parameter estimation, and degrade due to model and parameter mismatch. To mitigate asynchronous impulsive noise, we exploit its sparsity in the time domain, and apply sparse Bayesian learning methods to estimate and subtract the noise impulses. We propose three iterative algorithms with different complexity vs. performance trade-offs: (1) we utilize the noise projection onto null and pilot tones; (2) we add the information in the date tones to perform joint noise estimation and symbol detection; (3) we use decision feedback from the decoder to further enhance the accuracy of noise estimation. These algorithms are also embedded in a time-domain block interleaving OFDM system to mitigate periodic impulsive noise. Compared to conventional OFDM receivers, the proposed methods achieve SNR gains of up to 9 dB in coded and 10 dB in uncoded systems in asynchronous impulsive noise, and up to 6 dB in coded systems in periodic impulsive noise.</description><subject>Algorithms</subject><subject>Asynchronous impulsive noise</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Degradation</subject><subject>Discrete Fourier transforms</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Niobium</subject><subject>Noise</subject><subject>Noise levels</subject><subject>OFDM</subject><subject>periodic impulsive noise</subject><subject>PLC</subject><subject>Receivers</subject><subject>sparse Bayesian learning</subject><subject>Studies</subject><subject>Time-domain analysis</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRS0EEuWxR2ITiQ2blJlMUttLqHiqPCTo2nLSCTJKnGI3IP6elCIWrGZxz70aHSGOEMaIoM_uns-n4wyQxkggIdsSIywKlQKA2hYjkESpkjjZFXsxvgFgnqtsJOa37bJvovvg5KFzkZN7t3KvduU6nzifPHWfHBrnOZl2bdt7V_1EMZlH51-T56UNQ-fCfnF01icztsEPwYHYqW0T-fD37ov51eXL9CadPV7fTs9naUUaVqmVhAWSLXgBjExUlqzLSurScq2plrmUUKu8yspaYomLulIVYa5BTiypBe2L083uMnTvPceVaV2suGms566PBnOUGjPSekBP_qFvXR_88J1BkhlBoQoYKNhQVehiDFybZXCtDV8Gwaw9m7Vns_ZsNp6HyvGm4pj5D58UuVSZpG8uxnlP</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Jing Lin</creator><creator>Nassar, M.</creator><creator>Evans, B. L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130701</creationdate><title>Impulsive Noise Mitigation in Powerline Communications Using Sparse Bayesian Learning</title><author>Jing Lin ; Nassar, M. ; Evans, B. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-a731513a5ed0e1e33bbe9bc79baef93f74770f84c2bf71b1dfc8c3149076a38d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Asynchronous impulsive noise</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Degradation</topic><topic>Discrete Fourier transforms</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Niobium</topic><topic>Noise</topic><topic>Noise levels</topic><topic>OFDM</topic><topic>periodic impulsive noise</topic><topic>PLC</topic><topic>Receivers</topic><topic>sparse Bayesian learning</topic><topic>Studies</topic><topic>Time-domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing Lin</creatorcontrib><creatorcontrib>Nassar, M.</creatorcontrib><creatorcontrib>Evans, B. L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jing Lin</au><au>Nassar, M.</au><au>Evans, B. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impulsive Noise Mitigation in Powerline Communications Using Sparse Bayesian Learning</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>31</volume><issue>7</issue><spage>1172</spage><epage>1183</epage><pages>1172-1183</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Asynchronous impulsive noise and periodic impulsive noises limit communication performance in OFDM powerline communication systems. Conventional OFDM receivers that assume additive white Gaussian noise experience degradation in communication performance in impulsive noise. Alternate designs assume a statistical noise model and use the model parameters in mitigating impulsive noise. These receivers require training overhead for parameter estimation, and degrade due to model and parameter mismatch. To mitigate asynchronous impulsive noise, we exploit its sparsity in the time domain, and apply sparse Bayesian learning methods to estimate and subtract the noise impulses. We propose three iterative algorithms with different complexity vs. performance trade-offs: (1) we utilize the noise projection onto null and pilot tones; (2) we add the information in the date tones to perform joint noise estimation and symbol detection; (3) we use decision feedback from the decoder to further enhance the accuracy of noise estimation. These algorithms are also embedded in a time-domain block interleaving OFDM system to mitigate periodic impulsive noise. Compared to conventional OFDM receivers, the proposed methods achieve SNR gains of up to 9 dB in coded and 10 dB in uncoded systems in asynchronous impulsive noise, and up to 6 dB in coded systems in periodic impulsive noise.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2013.130702</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2013-07, Vol.31 (7), p.1172-1183
issn 0733-8716
1558-0008
language eng
recordid cdi_proquest_journals_1372305850
source IEEE Electronic Library (IEL)
subjects Algorithms
Asynchronous impulsive noise
Bayes methods
Bayesian analysis
Degradation
Discrete Fourier transforms
Learning
Mathematical models
Niobium
Noise
Noise levels
OFDM
periodic impulsive noise
PLC
Receivers
sparse Bayesian learning
Studies
Time-domain analysis
title Impulsive Noise Mitigation in Powerline Communications Using Sparse Bayesian Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impulsive%20Noise%20Mitigation%20in%20Powerline%20Communications%20Using%20Sparse%20Bayesian%20Learning&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Jing%20Lin&rft.date=2013-07-01&rft.volume=31&rft.issue=7&rft.spage=1172&rft.epage=1183&rft.pages=1172-1183&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2013.130702&rft_dat=%3Cproquest_RIE%3E3007759701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372305850&rft_id=info:pmid/&rft_ieee_id=6547827&rfr_iscdi=true