Numerical Analysis of the Boundary Scattering Effect on Transport Properties in Bi-Sb Nanowires
In this study, we have numerically analyzed the transport properties of Bi-Sb nanowires, taking into account wire boundary scattering. Wire boundary scattering slightly decreased the Seebeck coefficient of Bi-Sb nanowires. This effect is due to the observation that boundary scattering and the mobili...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2013-07, Vol.42 (7), p.2172-2177 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2177 |
---|---|
container_issue | 7 |
container_start_page | 2172 |
container_title | Journal of electronic materials |
container_volume | 42 |
creator | Nabatame, Yuta Matsumoto, Tsuyoshi Ichige, Yuki Komine, Takashi Sugita, Ryuji Murata, Masayuki Hasegawa, Yasuhiro |
description | In this study, we have numerically analyzed the transport properties of Bi-Sb nanowires, taking into account wire boundary scattering. Wire boundary scattering slightly decreased the Seebeck coefficient of Bi-Sb nanowires. This effect is due to the observation that boundary scattering and the mobility ratio of L-point electrons to T-point holes in the nanowires are smaller than those in bulk Bi-Sb because the wire boundary scattering suppresses the mobilities of L-point electrons and heavy holes. The largest Seebeck coefficient for all wire diameters was obtained when the Sb concentration was 5 at.%. The effective mass approached zero near 5 at.% Sb, and the small effective mass led to a large subband shift in each band. Thus, a small effective mass enhances the quantum effect at a fixed wire diameter, even if wire boundary scattering is taken into account. |
doi_str_mv | 10.1007/s11664-013-2564-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1370823281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3003597331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-7bf70e8f4b95af0ace658e883f12bc619328fe5ca2c8140e3064e935183e242e3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouH78AG8B8VjNJE2aHlX8gkUFV_AW0jjRLmtTkxbx35uli3jxNHN45mXeh5AjYKfAWHWWAJQqCwai4DIvcovMQJaiAK1etsmMCQWF5ELukr2UloyBBA0zYu7HD4ytsyt63tnVd2oTDZ4O70gvwti92vhNn5wdhgx1b_TKe3QDDR1dRNulPsSBPsbQYxxaTLTt6EVbPDX03nbhq42YDsiOt6uEh5u5T56vrxaXt8X84ebu8nxeuBL4UFSNrxhqXza1tJ5Zh0pq1Fp44I1TUAuuPUpnudNQMhRMlViL3EEgLzmKfXI85fYxfI6YBrMMY8yNkgFRMc1zAGQKJsrFkFJEb_rYfuSOBphZezSTR5M9mrVHI_PNySbZpqzJ596uTb-HvFK1qiueOT5xqV-rwvjng3_DfwAXsYIm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370823281</pqid></control><display><type>article</type><title>Numerical Analysis of the Boundary Scattering Effect on Transport Properties in Bi-Sb Nanowires</title><source>SpringerLink Journals</source><creator>Nabatame, Yuta ; Matsumoto, Tsuyoshi ; Ichige, Yuki ; Komine, Takashi ; Sugita, Ryuji ; Murata, Masayuki ; Hasegawa, Yasuhiro</creator><creatorcontrib>Nabatame, Yuta ; Matsumoto, Tsuyoshi ; Ichige, Yuki ; Komine, Takashi ; Sugita, Ryuji ; Murata, Masayuki ; Hasegawa, Yasuhiro</creatorcontrib><description>In this study, we have numerically analyzed the transport properties of Bi-Sb nanowires, taking into account wire boundary scattering. Wire boundary scattering slightly decreased the Seebeck coefficient of Bi-Sb nanowires. This effect is due to the observation that boundary scattering and the mobility ratio of L-point electrons to T-point holes in the nanowires are smaller than those in bulk Bi-Sb because the wire boundary scattering suppresses the mobilities of L-point electrons and heavy holes. The largest Seebeck coefficient for all wire diameters was obtained when the Sb concentration was 5 at.%. The effective mass approached zero near 5 at.% Sb, and the small effective mass led to a large subband shift in each band. Thus, a small effective mass enhances the quantum effect at a fixed wire diameter, even if wire boundary scattering is taken into account.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-013-2564-5</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cross-disciplinary physics: materials science; rheology ; Electric properties ; Electronics ; Electronics and Microelectronics ; Exact sciences and technology ; Heat conductivity ; Instrumentation ; Materials Science ; Nanoscale materials and structures: fabrication and characterization ; Nanowires ; Optical and Electronic Materials ; Optoelectronic devices ; Other topics in nanoscale materials and structures ; Physics ; Quantum wires ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solid State Physics ; Thermal energy</subject><ispartof>Journal of electronic materials, 2013-07, Vol.42 (7), p.2172-2177</ispartof><rights>TMS 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-7bf70e8f4b95af0ace658e883f12bc619328fe5ca2c8140e3064e935183e242e3</citedby><cites>FETCH-LOGICAL-c412t-7bf70e8f4b95af0ace658e883f12bc619328fe5ca2c8140e3064e935183e242e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-013-2564-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-013-2564-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27696972$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nabatame, Yuta</creatorcontrib><creatorcontrib>Matsumoto, Tsuyoshi</creatorcontrib><creatorcontrib>Ichige, Yuki</creatorcontrib><creatorcontrib>Komine, Takashi</creatorcontrib><creatorcontrib>Sugita, Ryuji</creatorcontrib><creatorcontrib>Murata, Masayuki</creatorcontrib><creatorcontrib>Hasegawa, Yasuhiro</creatorcontrib><title>Numerical Analysis of the Boundary Scattering Effect on Transport Properties in Bi-Sb Nanowires</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>In this study, we have numerically analyzed the transport properties of Bi-Sb nanowires, taking into account wire boundary scattering. Wire boundary scattering slightly decreased the Seebeck coefficient of Bi-Sb nanowires. This effect is due to the observation that boundary scattering and the mobility ratio of L-point electrons to T-point holes in the nanowires are smaller than those in bulk Bi-Sb because the wire boundary scattering suppresses the mobilities of L-point electrons and heavy holes. The largest Seebeck coefficient for all wire diameters was obtained when the Sb concentration was 5 at.%. The effective mass approached zero near 5 at.% Sb, and the small effective mass led to a large subband shift in each band. Thus, a small effective mass enhances the quantum effect at a fixed wire diameter, even if wire boundary scattering is taken into account.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric properties</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Heat conductivity</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanowires</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronic devices</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solid State Physics</subject><subject>Thermal energy</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouH78AG8B8VjNJE2aHlX8gkUFV_AW0jjRLmtTkxbx35uli3jxNHN45mXeh5AjYKfAWHWWAJQqCwai4DIvcovMQJaiAK1etsmMCQWF5ELukr2UloyBBA0zYu7HD4ytsyt63tnVd2oTDZ4O70gvwti92vhNn5wdhgx1b_TKe3QDDR1dRNulPsSBPsbQYxxaTLTt6EVbPDX03nbhq42YDsiOt6uEh5u5T56vrxaXt8X84ebu8nxeuBL4UFSNrxhqXza1tJ5Zh0pq1Fp44I1TUAuuPUpnudNQMhRMlViL3EEgLzmKfXI85fYxfI6YBrMMY8yNkgFRMc1zAGQKJsrFkFJEb_rYfuSOBphZezSTR5M9mrVHI_PNySbZpqzJ596uTb-HvFK1qiueOT5xqV-rwvjng3_DfwAXsYIm</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Nabatame, Yuta</creator><creator>Matsumoto, Tsuyoshi</creator><creator>Ichige, Yuki</creator><creator>Komine, Takashi</creator><creator>Sugita, Ryuji</creator><creator>Murata, Masayuki</creator><creator>Hasegawa, Yasuhiro</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20130701</creationdate><title>Numerical Analysis of the Boundary Scattering Effect on Transport Properties in Bi-Sb Nanowires</title><author>Nabatame, Yuta ; Matsumoto, Tsuyoshi ; Ichige, Yuki ; Komine, Takashi ; Sugita, Ryuji ; Murata, Masayuki ; Hasegawa, Yasuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-7bf70e8f4b95af0ace658e883f12bc619328fe5ca2c8140e3064e935183e242e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric properties</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Heat conductivity</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanowires</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronic devices</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solid State Physics</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nabatame, Yuta</creatorcontrib><creatorcontrib>Matsumoto, Tsuyoshi</creatorcontrib><creatorcontrib>Ichige, Yuki</creatorcontrib><creatorcontrib>Komine, Takashi</creatorcontrib><creatorcontrib>Sugita, Ryuji</creatorcontrib><creatorcontrib>Murata, Masayuki</creatorcontrib><creatorcontrib>Hasegawa, Yasuhiro</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nabatame, Yuta</au><au>Matsumoto, Tsuyoshi</au><au>Ichige, Yuki</au><au>Komine, Takashi</au><au>Sugita, Ryuji</au><au>Murata, Masayuki</au><au>Hasegawa, Yasuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Analysis of the Boundary Scattering Effect on Transport Properties in Bi-Sb Nanowires</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>42</volume><issue>7</issue><spage>2172</spage><epage>2177</epage><pages>2172-2177</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>In this study, we have numerically analyzed the transport properties of Bi-Sb nanowires, taking into account wire boundary scattering. Wire boundary scattering slightly decreased the Seebeck coefficient of Bi-Sb nanowires. This effect is due to the observation that boundary scattering and the mobility ratio of L-point electrons to T-point holes in the nanowires are smaller than those in bulk Bi-Sb because the wire boundary scattering suppresses the mobilities of L-point electrons and heavy holes. The largest Seebeck coefficient for all wire diameters was obtained when the Sb concentration was 5 at.%. The effective mass approached zero near 5 at.% Sb, and the small effective mass led to a large subband shift in each band. Thus, a small effective mass enhances the quantum effect at a fixed wire diameter, even if wire boundary scattering is taken into account.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-013-2564-5</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2013-07, Vol.42 (7), p.2172-2177 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_1370823281 |
source | SpringerLink Journals |
subjects | Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Cross-disciplinary physics: materials science rheology Electric properties Electronics Electronics and Microelectronics Exact sciences and technology Heat conductivity Instrumentation Materials Science Nanoscale materials and structures: fabrication and characterization Nanowires Optical and Electronic Materials Optoelectronic devices Other topics in nanoscale materials and structures Physics Quantum wires Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Solid State Physics Thermal energy |
title | Numerical Analysis of the Boundary Scattering Effect on Transport Properties in Bi-Sb Nanowires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Analysis%20of%20the%20Boundary%20Scattering%20Effect%20on%20Transport%20Properties%20in%20Bi-Sb%20Nanowires&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Nabatame,%20Yuta&rft.date=2013-07-01&rft.volume=42&rft.issue=7&rft.spage=2172&rft.epage=2177&rft.pages=2172-2177&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-013-2564-5&rft_dat=%3Cproquest_cross%3E3003597331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1370823281&rft_id=info:pmid/&rfr_iscdi=true |