Numerical Analysis of the Boundary Scattering Effect on Transport Properties in Bi-Sb Nanowires

In this study, we have numerically analyzed the transport properties of Bi-Sb nanowires, taking into account wire boundary scattering. Wire boundary scattering slightly decreased the Seebeck coefficient of Bi-Sb nanowires. This effect is due to the observation that boundary scattering and the mobili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2013-07, Vol.42 (7), p.2172-2177
Hauptverfasser: Nabatame, Yuta, Matsumoto, Tsuyoshi, Ichige, Yuki, Komine, Takashi, Sugita, Ryuji, Murata, Masayuki, Hasegawa, Yasuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2177
container_issue 7
container_start_page 2172
container_title Journal of electronic materials
container_volume 42
creator Nabatame, Yuta
Matsumoto, Tsuyoshi
Ichige, Yuki
Komine, Takashi
Sugita, Ryuji
Murata, Masayuki
Hasegawa, Yasuhiro
description In this study, we have numerically analyzed the transport properties of Bi-Sb nanowires, taking into account wire boundary scattering. Wire boundary scattering slightly decreased the Seebeck coefficient of Bi-Sb nanowires. This effect is due to the observation that boundary scattering and the mobility ratio of L-point electrons to T-point holes in the nanowires are smaller than those in bulk Bi-Sb because the wire boundary scattering suppresses the mobilities of L-point electrons and heavy holes. The largest Seebeck coefficient for all wire diameters was obtained when the Sb concentration was 5 at.%. The effective mass approached zero near 5 at.% Sb, and the small effective mass led to a large subband shift in each band. Thus, a small effective mass enhances the quantum effect at a fixed wire diameter, even if wire boundary scattering is taken into account.
doi_str_mv 10.1007/s11664-013-2564-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1370823281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3003597331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-7bf70e8f4b95af0ace658e883f12bc619328fe5ca2c8140e3064e935183e242e3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouH78AG8B8VjNJE2aHlX8gkUFV_AW0jjRLmtTkxbx35uli3jxNHN45mXeh5AjYKfAWHWWAJQqCwai4DIvcovMQJaiAK1etsmMCQWF5ELukr2UloyBBA0zYu7HD4ytsyt63tnVd2oTDZ4O70gvwti92vhNn5wdhgx1b_TKe3QDDR1dRNulPsSBPsbQYxxaTLTt6EVbPDX03nbhq42YDsiOt6uEh5u5T56vrxaXt8X84ebu8nxeuBL4UFSNrxhqXza1tJ5Zh0pq1Fp44I1TUAuuPUpnudNQMhRMlViL3EEgLzmKfXI85fYxfI6YBrMMY8yNkgFRMc1zAGQKJsrFkFJEb_rYfuSOBphZezSTR5M9mrVHI_PNySbZpqzJ596uTb-HvFK1qiueOT5xqV-rwvjng3_DfwAXsYIm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370823281</pqid></control><display><type>article</type><title>Numerical Analysis of the Boundary Scattering Effect on Transport Properties in Bi-Sb Nanowires</title><source>SpringerLink Journals</source><creator>Nabatame, Yuta ; Matsumoto, Tsuyoshi ; Ichige, Yuki ; Komine, Takashi ; Sugita, Ryuji ; Murata, Masayuki ; Hasegawa, Yasuhiro</creator><creatorcontrib>Nabatame, Yuta ; Matsumoto, Tsuyoshi ; Ichige, Yuki ; Komine, Takashi ; Sugita, Ryuji ; Murata, Masayuki ; Hasegawa, Yasuhiro</creatorcontrib><description>In this study, we have numerically analyzed the transport properties of Bi-Sb nanowires, taking into account wire boundary scattering. Wire boundary scattering slightly decreased the Seebeck coefficient of Bi-Sb nanowires. This effect is due to the observation that boundary scattering and the mobility ratio of L-point electrons to T-point holes in the nanowires are smaller than those in bulk Bi-Sb because the wire boundary scattering suppresses the mobilities of L-point electrons and heavy holes. The largest Seebeck coefficient for all wire diameters was obtained when the Sb concentration was 5 at.%. The effective mass approached zero near 5 at.% Sb, and the small effective mass led to a large subband shift in each band. Thus, a small effective mass enhances the quantum effect at a fixed wire diameter, even if wire boundary scattering is taken into account.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-013-2564-5</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cross-disciplinary physics: materials science; rheology ; Electric properties ; Electronics ; Electronics and Microelectronics ; Exact sciences and technology ; Heat conductivity ; Instrumentation ; Materials Science ; Nanoscale materials and structures: fabrication and characterization ; Nanowires ; Optical and Electronic Materials ; Optoelectronic devices ; Other topics in nanoscale materials and structures ; Physics ; Quantum wires ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solid State Physics ; Thermal energy</subject><ispartof>Journal of electronic materials, 2013-07, Vol.42 (7), p.2172-2177</ispartof><rights>TMS 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-7bf70e8f4b95af0ace658e883f12bc619328fe5ca2c8140e3064e935183e242e3</citedby><cites>FETCH-LOGICAL-c412t-7bf70e8f4b95af0ace658e883f12bc619328fe5ca2c8140e3064e935183e242e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-013-2564-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-013-2564-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27696972$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nabatame, Yuta</creatorcontrib><creatorcontrib>Matsumoto, Tsuyoshi</creatorcontrib><creatorcontrib>Ichige, Yuki</creatorcontrib><creatorcontrib>Komine, Takashi</creatorcontrib><creatorcontrib>Sugita, Ryuji</creatorcontrib><creatorcontrib>Murata, Masayuki</creatorcontrib><creatorcontrib>Hasegawa, Yasuhiro</creatorcontrib><title>Numerical Analysis of the Boundary Scattering Effect on Transport Properties in Bi-Sb Nanowires</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>In this study, we have numerically analyzed the transport properties of Bi-Sb nanowires, taking into account wire boundary scattering. Wire boundary scattering slightly decreased the Seebeck coefficient of Bi-Sb nanowires. This effect is due to the observation that boundary scattering and the mobility ratio of L-point electrons to T-point holes in the nanowires are smaller than those in bulk Bi-Sb because the wire boundary scattering suppresses the mobilities of L-point electrons and heavy holes. The largest Seebeck coefficient for all wire diameters was obtained when the Sb concentration was 5 at.%. The effective mass approached zero near 5 at.% Sb, and the small effective mass led to a large subband shift in each band. Thus, a small effective mass enhances the quantum effect at a fixed wire diameter, even if wire boundary scattering is taken into account.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric properties</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Heat conductivity</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanowires</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronic devices</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solid State Physics</subject><subject>Thermal energy</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouH78AG8B8VjNJE2aHlX8gkUFV_AW0jjRLmtTkxbx35uli3jxNHN45mXeh5AjYKfAWHWWAJQqCwai4DIvcovMQJaiAK1etsmMCQWF5ELukr2UloyBBA0zYu7HD4ytsyt63tnVd2oTDZ4O70gvwti92vhNn5wdhgx1b_TKe3QDDR1dRNulPsSBPsbQYxxaTLTt6EVbPDX03nbhq42YDsiOt6uEh5u5T56vrxaXt8X84ebu8nxeuBL4UFSNrxhqXza1tJ5Zh0pq1Fp44I1TUAuuPUpnudNQMhRMlViL3EEgLzmKfXI85fYxfI6YBrMMY8yNkgFRMc1zAGQKJsrFkFJEb_rYfuSOBphZezSTR5M9mrVHI_PNySbZpqzJ596uTb-HvFK1qiueOT5xqV-rwvjng3_DfwAXsYIm</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Nabatame, Yuta</creator><creator>Matsumoto, Tsuyoshi</creator><creator>Ichige, Yuki</creator><creator>Komine, Takashi</creator><creator>Sugita, Ryuji</creator><creator>Murata, Masayuki</creator><creator>Hasegawa, Yasuhiro</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20130701</creationdate><title>Numerical Analysis of the Boundary Scattering Effect on Transport Properties in Bi-Sb Nanowires</title><author>Nabatame, Yuta ; Matsumoto, Tsuyoshi ; Ichige, Yuki ; Komine, Takashi ; Sugita, Ryuji ; Murata, Masayuki ; Hasegawa, Yasuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-7bf70e8f4b95af0ace658e883f12bc619328fe5ca2c8140e3064e935183e242e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric properties</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Heat conductivity</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanowires</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronic devices</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solid State Physics</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nabatame, Yuta</creatorcontrib><creatorcontrib>Matsumoto, Tsuyoshi</creatorcontrib><creatorcontrib>Ichige, Yuki</creatorcontrib><creatorcontrib>Komine, Takashi</creatorcontrib><creatorcontrib>Sugita, Ryuji</creatorcontrib><creatorcontrib>Murata, Masayuki</creatorcontrib><creatorcontrib>Hasegawa, Yasuhiro</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nabatame, Yuta</au><au>Matsumoto, Tsuyoshi</au><au>Ichige, Yuki</au><au>Komine, Takashi</au><au>Sugita, Ryuji</au><au>Murata, Masayuki</au><au>Hasegawa, Yasuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Analysis of the Boundary Scattering Effect on Transport Properties in Bi-Sb Nanowires</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>42</volume><issue>7</issue><spage>2172</spage><epage>2177</epage><pages>2172-2177</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>In this study, we have numerically analyzed the transport properties of Bi-Sb nanowires, taking into account wire boundary scattering. Wire boundary scattering slightly decreased the Seebeck coefficient of Bi-Sb nanowires. This effect is due to the observation that boundary scattering and the mobility ratio of L-point electrons to T-point holes in the nanowires are smaller than those in bulk Bi-Sb because the wire boundary scattering suppresses the mobilities of L-point electrons and heavy holes. The largest Seebeck coefficient for all wire diameters was obtained when the Sb concentration was 5 at.%. The effective mass approached zero near 5 at.% Sb, and the small effective mass led to a large subband shift in each band. Thus, a small effective mass enhances the quantum effect at a fixed wire diameter, even if wire boundary scattering is taken into account.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-013-2564-5</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2013-07, Vol.42 (7), p.2172-2177
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1370823281
source SpringerLink Journals
subjects Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cross-disciplinary physics: materials science
rheology
Electric properties
Electronics
Electronics and Microelectronics
Exact sciences and technology
Heat conductivity
Instrumentation
Materials Science
Nanoscale materials and structures: fabrication and characterization
Nanowires
Optical and Electronic Materials
Optoelectronic devices
Other topics in nanoscale materials and structures
Physics
Quantum wires
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Solid State Physics
Thermal energy
title Numerical Analysis of the Boundary Scattering Effect on Transport Properties in Bi-Sb Nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Analysis%20of%20the%20Boundary%20Scattering%20Effect%20on%20Transport%20Properties%20in%20Bi-Sb%20Nanowires&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Nabatame,%20Yuta&rft.date=2013-07-01&rft.volume=42&rft.issue=7&rft.spage=2172&rft.epage=2177&rft.pages=2172-2177&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-013-2564-5&rft_dat=%3Cproquest_cross%3E3003597331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1370823281&rft_id=info:pmid/&rfr_iscdi=true