Impact of Thermal Radiation on the Performance of Ultrasmall Microcoolers
On extremely small scales, traditional microcooler performance estimates must be corrected to include losses due to radiation. We present a method for analysis of microcoolers having a significant radiative contribution to their thermal conductance. We have fabricated ultrasmall microcoolers from sp...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2013-07, Vol.42 (7), p.1870-1876 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1876 |
---|---|
container_issue | 7 |
container_start_page | 1870 |
container_title | Journal of electronic materials |
container_volume | 42 |
creator | Shea, Ryan P. Gawarikar, Anand S. Talghader, Joseph J. |
description | On extremely small scales, traditional microcooler performance estimates must be corrected to include losses due to radiation. We present a method for analysis of microcoolers having a significant radiative contribution to their thermal conductance. We have fabricated ultrasmall microcoolers from sputtered Bi
2
Te
3
/Sb
2
Te
3
thermoelectric junctions with cooling volumes of 200
μ
m × 200
μ
m × 65 nm, which we believe to be the smallest microcoolers ever made. The devices are highly thermally isolated with total thermal conductance under 5 × 10
−7
W/K in vacuum at room temperature. By fitting the temperature response to input power of the devices in vacuum, we have quantified the nonlinearity of the response to calculate the radiative and film contributions to the total thermal conductance of the device. Three device geometries are presented, with radiative contributions to thermal conductance of 15%, 26%, and 100% depending on their emissive area and support structure. The cooling capabilities of these devices are also measured with maximum cooling of 3.1 K for the 15% radiation-limited device and 2.6 K for the 26% radiation-limited device, with power consumptions below 5
μ
W. |
doi_str_mv | 10.1007/s11664-012-2453-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1370823195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3003596821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-12cf99dca0030a12af38397db88735ece14c0bc8f0ccb9dd53bd93b262c14c153</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCeIxmMpvs7lGKfwoVRVrwFrLZxG7ZNjVZD357s2wRL8LAHN5v3sw8Qi6B3QBjxW0EkDKnDDjluUCKR2QCIkcKpXw_JhOGEqjgKE7JWYwbxkBACRMyn2_32vSZd9lybcNWd9mbblrdt36XperXNnu1wfkk7YwduFXXBx0T2WXPrQneeN_ZEM_JidNdtBeHPiWrh_vl7IkuXh7ns7sFNZjLngI3rqoaoxlDpoFrhyVWRVOXZYHCGgu5YbUpHTOmrppGYN1UWHPJTVJA4JRcjb774D-_bOzVxn-FXVqpAAtWcoRqoGCk0oExBuvUPrRbHb4VMDUkpsbEVEpMDYkpTDPXB2cdje5cSB-38XeQF7KSFR-8-cjFJO0-bPhzwb_mP8WYesg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370823195</pqid></control><display><type>article</type><title>Impact of Thermal Radiation on the Performance of Ultrasmall Microcoolers</title><source>Springer Nature - Complete Springer Journals</source><creator>Shea, Ryan P. ; Gawarikar, Anand S. ; Talghader, Joseph J.</creator><creatorcontrib>Shea, Ryan P. ; Gawarikar, Anand S. ; Talghader, Joseph J.</creatorcontrib><description>On extremely small scales, traditional microcooler performance estimates must be corrected to include losses due to radiation. We present a method for analysis of microcoolers having a significant radiative contribution to their thermal conductance. We have fabricated ultrasmall microcoolers from sputtered Bi
2
Te
3
/Sb
2
Te
3
thermoelectric junctions with cooling volumes of 200
μ
m × 200
μ
m × 65 nm, which we believe to be the smallest microcoolers ever made. The devices are highly thermally isolated with total thermal conductance under 5 × 10
−7
W/K in vacuum at room temperature. By fitting the temperature response to input power of the devices in vacuum, we have quantified the nonlinearity of the response to calculate the radiative and film contributions to the total thermal conductance of the device. Three device geometries are presented, with radiative contributions to thermal conductance of 15%, 26%, and 100% depending on their emissive area and support structure. The cooling capabilities of these devices are also measured with maximum cooling of 3.1 K for the 15% radiation-limited device and 2.6 K for the 26% radiation-limited device, with power consumptions below 5
μ
W.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-012-2453-3</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: structure, mechanical and thermal properties ; Cooling ; Cross-disciplinary physics: materials science; rheology ; Deposition by sputtering ; Electricity generation ; Electronics ; Electronics and Microelectronics ; Exact sciences and technology ; Heat conductivity ; Heat transfer ; Instrumentation ; Materials Science ; Methods of deposition of films and coatings; film growth and epitaxy ; Micro- and nanoelectromechanical devices (mems/nems) ; Optical and Electronic Materials ; Physical properties of thin films, nonelectronic ; Physics ; Radiation ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solid State Physics ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thermal stability; thermal effects</subject><ispartof>Journal of electronic materials, 2013-07, Vol.42 (7), p.1870-1876</ispartof><rights>TMS 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-12cf99dca0030a12af38397db88735ece14c0bc8f0ccb9dd53bd93b262c14c153</citedby><cites>FETCH-LOGICAL-c346t-12cf99dca0030a12af38397db88735ece14c0bc8f0ccb9dd53bd93b262c14c153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-012-2453-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-012-2453-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27696925$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shea, Ryan P.</creatorcontrib><creatorcontrib>Gawarikar, Anand S.</creatorcontrib><creatorcontrib>Talghader, Joseph J.</creatorcontrib><title>Impact of Thermal Radiation on the Performance of Ultrasmall Microcoolers</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>On extremely small scales, traditional microcooler performance estimates must be corrected to include losses due to radiation. We present a method for analysis of microcoolers having a significant radiative contribution to their thermal conductance. We have fabricated ultrasmall microcoolers from sputtered Bi
2
Te
3
/Sb
2
Te
3
thermoelectric junctions with cooling volumes of 200
μ
m × 200
μ
m × 65 nm, which we believe to be the smallest microcoolers ever made. The devices are highly thermally isolated with total thermal conductance under 5 × 10
−7
W/K in vacuum at room temperature. By fitting the temperature response to input power of the devices in vacuum, we have quantified the nonlinearity of the response to calculate the radiative and film contributions to the total thermal conductance of the device. Three device geometries are presented, with radiative contributions to thermal conductance of 15%, 26%, and 100% depending on their emissive area and support structure. The cooling capabilities of these devices are also measured with maximum cooling of 3.1 K for the 15% radiation-limited device and 2.6 K for the 26% radiation-limited device, with power consumptions below 5
μ
W.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cooling</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition by sputtering</subject><subject>Electricity generation</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Optical and Electronic Materials</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Radiation</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solid State Physics</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thermal stability; thermal effects</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuCeIxmMpvs7lGKfwoVRVrwFrLZxG7ZNjVZD357s2wRL8LAHN5v3sw8Qi6B3QBjxW0EkDKnDDjluUCKR2QCIkcKpXw_JhOGEqjgKE7JWYwbxkBACRMyn2_32vSZd9lybcNWd9mbblrdt36XperXNnu1wfkk7YwduFXXBx0T2WXPrQneeN_ZEM_JidNdtBeHPiWrh_vl7IkuXh7ns7sFNZjLngI3rqoaoxlDpoFrhyVWRVOXZYHCGgu5YbUpHTOmrppGYN1UWHPJTVJA4JRcjb774D-_bOzVxn-FXVqpAAtWcoRqoGCk0oExBuvUPrRbHb4VMDUkpsbEVEpMDYkpTDPXB2cdje5cSB-38XeQF7KSFR-8-cjFJO0-bPhzwb_mP8WYesg</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Shea, Ryan P.</creator><creator>Gawarikar, Anand S.</creator><creator>Talghader, Joseph J.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20130701</creationdate><title>Impact of Thermal Radiation on the Performance of Ultrasmall Microcoolers</title><author>Shea, Ryan P. ; Gawarikar, Anand S. ; Talghader, Joseph J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-12cf99dca0030a12af38397db88735ece14c0bc8f0ccb9dd53bd93b262c14c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cooling</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition by sputtering</topic><topic>Electricity generation</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Optical and Electronic Materials</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Radiation</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solid State Physics</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thermal stability; thermal effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shea, Ryan P.</creatorcontrib><creatorcontrib>Gawarikar, Anand S.</creatorcontrib><creatorcontrib>Talghader, Joseph J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shea, Ryan P.</au><au>Gawarikar, Anand S.</au><au>Talghader, Joseph J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Thermal Radiation on the Performance of Ultrasmall Microcoolers</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>42</volume><issue>7</issue><spage>1870</spage><epage>1876</epage><pages>1870-1876</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>On extremely small scales, traditional microcooler performance estimates must be corrected to include losses due to radiation. We present a method for analysis of microcoolers having a significant radiative contribution to their thermal conductance. We have fabricated ultrasmall microcoolers from sputtered Bi
2
Te
3
/Sb
2
Te
3
thermoelectric junctions with cooling volumes of 200
μ
m × 200
μ
m × 65 nm, which we believe to be the smallest microcoolers ever made. The devices are highly thermally isolated with total thermal conductance under 5 × 10
−7
W/K in vacuum at room temperature. By fitting the temperature response to input power of the devices in vacuum, we have quantified the nonlinearity of the response to calculate the radiative and film contributions to the total thermal conductance of the device. Three device geometries are presented, with radiative contributions to thermal conductance of 15%, 26%, and 100% depending on their emissive area and support structure. The cooling capabilities of these devices are also measured with maximum cooling of 3.1 K for the 15% radiation-limited device and 2.6 K for the 26% radiation-limited device, with power consumptions below 5
μ
W.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-012-2453-3</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2013-07, Vol.42 (7), p.1870-1876 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_1370823195 |
source | Springer Nature - Complete Springer Journals |
subjects | Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Condensed matter: structure, mechanical and thermal properties Cooling Cross-disciplinary physics: materials science rheology Deposition by sputtering Electricity generation Electronics Electronics and Microelectronics Exact sciences and technology Heat conductivity Heat transfer Instrumentation Materials Science Methods of deposition of films and coatings film growth and epitaxy Micro- and nanoelectromechanical devices (mems/nems) Optical and Electronic Materials Physical properties of thin films, nonelectronic Physics Radiation Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Solid State Physics Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thermal stability thermal effects |
title | Impact of Thermal Radiation on the Performance of Ultrasmall Microcoolers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A08%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Thermal%20Radiation%20on%20the%20Performance%20of%20Ultrasmall%20Microcoolers&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Shea,%20Ryan%20P.&rft.date=2013-07-01&rft.volume=42&rft.issue=7&rft.spage=1870&rft.epage=1876&rft.pages=1870-1876&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-012-2453-3&rft_dat=%3Cproquest_cross%3E3003596821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1370823195&rft_id=info:pmid/&rfr_iscdi=true |