One component? Two components? Three? The effect of including a nonexchanging "free" water component in multicomponent driven equilibrium single pulse observation of T1 and T2
Quantitative myelin content imaging provides novel and pertinent information related to underlying pathogenetic mechanisms of myelin‐related disease or disorders arising from aberrant connectivity. Multicomponent driven equilibrium single pulse observation of T1 and T2 is a time‐efficient multicompo...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2013-07, Vol.70 (1), p.147-154 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | 1 |
container_start_page | 147 |
container_title | Magnetic resonance in medicine |
container_volume | 70 |
creator | Deoni, Sean C. L. Matthews, Lucy Kolind, Shannon H. |
description | Quantitative myelin content imaging provides novel and pertinent information related to underlying pathogenetic mechanisms of myelin‐related disease or disorders arising from aberrant connectivity. Multicomponent driven equilibrium single pulse observation of T1 and T2 is a time‐efficient multicomponent relaxation analysis technique that provides estimates of the myelin water fraction, a surrogate measure of myelin volume. Unfortunately, multicomponent driven equilibrium single pulse observation of T1 and T2 relies on a two water‐pool model (myelin‐associated water and intra/extracellular water), which is inadequate within partial volume voxels, i.e., containing brain tissue and ventricle or meninges, resulting in myelin water fraction underestimation. To address this, a third, nonexchanging “free‐water” component was introduced to the multicomponent driven equilibrium single pulse observation of T1 and T2 model. Numerical simulations and experimental in vivo data show that the model to perform advantageously within partial volume regions while providing robust and reproducible results. It is concluded that this model is preferable for future studies and analysis. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/mrm.24429 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_1370165209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3001241971</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3179-a5d154dfd30226af72da1d4ac340bd51d6fd4eb1e7d1f4c98ceb8d80779491733</originalsourceid><addsrcrecordid>eNpFkc1O3DAUha2qqAy0C14AWXQd8F_ieIUqVH6kAaRqoFU3lhNfgyFxBidh4Kl4RTwMMKvrY3_nXMkHoR1K9ikh7KCN7T4TgqkvaEJzxjKWK_EVTYgUJONUiU201fd3hBClpPiGNhlTNOe0mKCXywC47tp5FyAMh3i26NayT_o2AiwHYHAO6gF3DvtQN6P14QYbHBL5VN-acLPUey7he3hhBojrnGTA7dgMfn1jo3-EgOFh9I2voh9b3KeABvB8bHrAXdVDfDSD78Jy44xiEyyese9ow5kE_Hif2-jq-Pfs6DSbXp6cHf2aZp5TqTKTW5oL6ywnjBXGSWYNtcLUXJDK5tQWzgqoKEhLnahVWUNV2pJIqYSikvNt9HOVO4_dwwj9oO-6MYa0UlMuCS1yRlSidt-psWrB6nn0rYnP-uN_E3CwAha-gefPd0r0sjiditNvxenzP-dvh-TIVg7fD_D06TDxXheSy1z_vTjR18dT9a8o_-uSvwJjb5y5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370165209</pqid></control><display><type>article</type><title>One component? Two components? Three? The effect of including a nonexchanging "free" water component in multicomponent driven equilibrium single pulse observation of T1 and T2</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Deoni, Sean C. L. ; Matthews, Lucy ; Kolind, Shannon H.</creator><creatorcontrib>Deoni, Sean C. L. ; Matthews, Lucy ; Kolind, Shannon H.</creatorcontrib><description>Quantitative myelin content imaging provides novel and pertinent information related to underlying pathogenetic mechanisms of myelin‐related disease or disorders arising from aberrant connectivity. Multicomponent driven equilibrium single pulse observation of T1 and T2 is a time‐efficient multicomponent relaxation analysis technique that provides estimates of the myelin water fraction, a surrogate measure of myelin volume. Unfortunately, multicomponent driven equilibrium single pulse observation of T1 and T2 relies on a two water‐pool model (myelin‐associated water and intra/extracellular water), which is inadequate within partial volume voxels, i.e., containing brain tissue and ventricle or meninges, resulting in myelin water fraction underestimation. To address this, a third, nonexchanging “free‐water” component was introduced to the multicomponent driven equilibrium single pulse observation of T1 and T2 model. Numerical simulations and experimental in vivo data show that the model to perform advantageously within partial volume regions while providing robust and reproducible results. It is concluded that this model is preferable for future studies and analysis. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.24429</identifier><identifier>PMID: 22915316</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adult ; Aged, 80 and over ; Body Water - cytology ; Brain - pathology ; Female ; human brain imaging ; Humans ; Image Interpretation, Computer-Assisted - methods ; Infant ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Spectroscopy - methods ; Male ; Molecular Imaging - methods ; myelin imaging ; Myelin Sheath - pathology ; myelin water fraction ; quantitative imaging ; Reproducibility of Results ; Sensitivity and Specificity ; Spinal Cord - pathology ; Tissue Distribution ; white matter imaging</subject><ispartof>Magnetic resonance in medicine, 2013-07, Vol.70 (1), p.147-154</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.24429$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.24429$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,1435,27931,27932,45581,45582,46416,46840</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22915316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deoni, Sean C. L.</creatorcontrib><creatorcontrib>Matthews, Lucy</creatorcontrib><creatorcontrib>Kolind, Shannon H.</creatorcontrib><title>One component? Two components? Three? The effect of including a nonexchanging "free" water component in multicomponent driven equilibrium single pulse observation of T1 and T2</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Quantitative myelin content imaging provides novel and pertinent information related to underlying pathogenetic mechanisms of myelin‐related disease or disorders arising from aberrant connectivity. Multicomponent driven equilibrium single pulse observation of T1 and T2 is a time‐efficient multicomponent relaxation analysis technique that provides estimates of the myelin water fraction, a surrogate measure of myelin volume. Unfortunately, multicomponent driven equilibrium single pulse observation of T1 and T2 relies on a two water‐pool model (myelin‐associated water and intra/extracellular water), which is inadequate within partial volume voxels, i.e., containing brain tissue and ventricle or meninges, resulting in myelin water fraction underestimation. To address this, a third, nonexchanging “free‐water” component was introduced to the multicomponent driven equilibrium single pulse observation of T1 and T2 model. Numerical simulations and experimental in vivo data show that the model to perform advantageously within partial volume regions while providing robust and reproducible results. It is concluded that this model is preferable for future studies and analysis. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.</description><subject>Adult</subject><subject>Aged, 80 and over</subject><subject>Body Water - cytology</subject><subject>Brain - pathology</subject><subject>Female</subject><subject>human brain imaging</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Infant</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Male</subject><subject>Molecular Imaging - methods</subject><subject>myelin imaging</subject><subject>Myelin Sheath - pathology</subject><subject>myelin water fraction</subject><subject>quantitative imaging</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Spinal Cord - pathology</subject><subject>Tissue Distribution</subject><subject>white matter imaging</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkc1O3DAUha2qqAy0C14AWXQd8F_ieIUqVH6kAaRqoFU3lhNfgyFxBidh4Kl4RTwMMKvrY3_nXMkHoR1K9ikh7KCN7T4TgqkvaEJzxjKWK_EVTYgUJONUiU201fd3hBClpPiGNhlTNOe0mKCXywC47tp5FyAMh3i26NayT_o2AiwHYHAO6gF3DvtQN6P14QYbHBL5VN-acLPUey7he3hhBojrnGTA7dgMfn1jo3-EgOFh9I2voh9b3KeABvB8bHrAXdVDfDSD78Jy44xiEyyese9ow5kE_Hif2-jq-Pfs6DSbXp6cHf2aZp5TqTKTW5oL6ywnjBXGSWYNtcLUXJDK5tQWzgqoKEhLnahVWUNV2pJIqYSikvNt9HOVO4_dwwj9oO-6MYa0UlMuCS1yRlSidt-psWrB6nn0rYnP-uN_E3CwAha-gefPd0r0sjiditNvxenzP-dvh-TIVg7fD_D06TDxXheSy1z_vTjR18dT9a8o_-uSvwJjb5y5</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Deoni, Sean C. L.</creator><creator>Matthews, Lucy</creator><creator>Kolind, Shannon H.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope></search><sort><creationdate>201307</creationdate><title>One component? Two components? Three? The effect of including a nonexchanging "free" water component in multicomponent driven equilibrium single pulse observation of T1 and T2</title><author>Deoni, Sean C. L. ; Matthews, Lucy ; Kolind, Shannon H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3179-a5d154dfd30226af72da1d4ac340bd51d6fd4eb1e7d1f4c98ceb8d80779491733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult</topic><topic>Aged, 80 and over</topic><topic>Body Water - cytology</topic><topic>Brain - pathology</topic><topic>Female</topic><topic>human brain imaging</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Infant</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Male</topic><topic>Molecular Imaging - methods</topic><topic>myelin imaging</topic><topic>Myelin Sheath - pathology</topic><topic>myelin water fraction</topic><topic>quantitative imaging</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Spinal Cord - pathology</topic><topic>Tissue Distribution</topic><topic>white matter imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deoni, Sean C. L.</creatorcontrib><creatorcontrib>Matthews, Lucy</creatorcontrib><creatorcontrib>Kolind, Shannon H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deoni, Sean C. L.</au><au>Matthews, Lucy</au><au>Kolind, Shannon H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One component? Two components? Three? The effect of including a nonexchanging "free" water component in multicomponent driven equilibrium single pulse observation of T1 and T2</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2013-07</date><risdate>2013</risdate><volume>70</volume><issue>1</issue><spage>147</spage><epage>154</epage><pages>147-154</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Quantitative myelin content imaging provides novel and pertinent information related to underlying pathogenetic mechanisms of myelin‐related disease or disorders arising from aberrant connectivity. Multicomponent driven equilibrium single pulse observation of T1 and T2 is a time‐efficient multicomponent relaxation analysis technique that provides estimates of the myelin water fraction, a surrogate measure of myelin volume. Unfortunately, multicomponent driven equilibrium single pulse observation of T1 and T2 relies on a two water‐pool model (myelin‐associated water and intra/extracellular water), which is inadequate within partial volume voxels, i.e., containing brain tissue and ventricle or meninges, resulting in myelin water fraction underestimation. To address this, a third, nonexchanging “free‐water” component was introduced to the multicomponent driven equilibrium single pulse observation of T1 and T2 model. Numerical simulations and experimental in vivo data show that the model to perform advantageously within partial volume regions while providing robust and reproducible results. It is concluded that this model is preferable for future studies and analysis. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22915316</pmid><doi>10.1002/mrm.24429</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2013-07, Vol.70 (1), p.147-154 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_journals_1370165209 |
source | MEDLINE; Access via Wiley Online Library; Wiley Online Library (Open Access Collection) |
subjects | Adult Aged, 80 and over Body Water - cytology Brain - pathology Female human brain imaging Humans Image Interpretation, Computer-Assisted - methods Infant Magnetic Resonance Imaging - methods Magnetic Resonance Spectroscopy - methods Male Molecular Imaging - methods myelin imaging Myelin Sheath - pathology myelin water fraction quantitative imaging Reproducibility of Results Sensitivity and Specificity Spinal Cord - pathology Tissue Distribution white matter imaging |
title | One component? Two components? Three? The effect of including a nonexchanging "free" water component in multicomponent driven equilibrium single pulse observation of T1 and T2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T08%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%20component?%20Two%20components?%20Three?%20The%20effect%20of%20including%20a%20nonexchanging%20%22free%22%20water%20component%20in%20multicomponent%20driven%20equilibrium%20single%20pulse%20observation%20of%20T1%20and%20T2&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Deoni,%20Sean%20C.%20L.&rft.date=2013-07&rft.volume=70&rft.issue=1&rft.spage=147&rft.epage=154&rft.pages=147-154&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.24429&rft_dat=%3Cproquest_pubme%3E3001241971%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1370165209&rft_id=info:pmid/22915316&rfr_iscdi=true |