An Effective Algorithm for the Futile Questioning Problem
In the futile questioning problem, one must decide whether acquisition of additional information can possibly lead to the proof of a conclusion. Solution of that problem demands evaluation of a quantified Boolean formula at the second level of the polynomial hierarchy. The same evaluation problem, c...
Gespeichert in:
Veröffentlicht in: | Journal of automated reasoning 2005-01, Vol.34 (1), p.31-47 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Journal of automated reasoning |
container_volume | 34 |
creator | Remshagen, Anja Truemper, Klaus |
description | In the futile questioning problem, one must decide whether acquisition of additional information can possibly lead to the proof of a conclusion. Solution of that problem demands evaluation of a quantified Boolean formula at the second level of the polynomial hierarchy. The same evaluation problem, called Q-ALL SAT, arises in many other applications. In this paper, we introduce a special subclass of Q-ALL SAT that is at the first level of the polynomial hierarchy. We develop a solution algorithm for the general case that uses a backtracking search and a new form of learning of clauses. Results are reported for two sets of instances involving a robot route problem and a game problem. For these instances, the algorithm is substantially faster than state-of-the-art solvers for quantified Boolean formulas.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s10817-005-0981-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1367565105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2995831771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-e35b06e2874a2ec87d43262cf5df29c2711c9ee1b20d72ce5c8c80a387928003</originalsourceid><addsrcrecordid>eNotkMFKAzEURYMoWKsf4C7gOvpeMplklqW0KhRU6D5MMy_tlOmkJlPBv3dKXd3N4d7LYewR4RkBzEtGsGgEgBZQWRT2ik1QGyWgNHDNJoClFaZQ6pbd5bwHAIVQTVg16_kiBPJD-0N81m1jaofdgYeY-LAjvjwNbUf860R5aGPf9lv-meKmo8M9uwl1l-nhP6dsvVys529i9fH6Pp-thJdSD4KU3kBJ0pqiluStaQolS-mDboKsvDSIviLCjYTGSE_aW2-hVtZU0o4vp-zpUntM8fv8wu3jKfXjokNVGl1qBD1SeKF8ijknCu6Y2kOdfh2COwtyF0FuFOTOgpxVf2TQVxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1367565105</pqid></control><display><type>article</type><title>An Effective Algorithm for the Futile Questioning Problem</title><source>Springer Nature - Complete Springer Journals</source><creator>Remshagen, Anja ; Truemper, Klaus</creator><creatorcontrib>Remshagen, Anja ; Truemper, Klaus</creatorcontrib><description>In the futile questioning problem, one must decide whether acquisition of additional information can possibly lead to the proof of a conclusion. Solution of that problem demands evaluation of a quantified Boolean formula at the second level of the polynomial hierarchy. The same evaluation problem, called Q-ALL SAT, arises in many other applications. In this paper, we introduce a special subclass of Q-ALL SAT that is at the first level of the polynomial hierarchy. We develop a solution algorithm for the general case that uses a backtracking search and a new form of learning of clauses. Results are reported for two sets of instances involving a robot route problem and a game problem. For these instances, the algorithm is substantially faster than state-of-the-art solvers for quantified Boolean formulas.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0168-7433</identifier><identifier>EISSN: 1573-0670</identifier><identifier>DOI: 10.1007/s10817-005-0981-8</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Algorithms ; Studies</subject><ispartof>Journal of automated reasoning, 2005-01, Vol.34 (1), p.31-47</ispartof><rights>Springer 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Remshagen, Anja</creatorcontrib><creatorcontrib>Truemper, Klaus</creatorcontrib><title>An Effective Algorithm for the Futile Questioning Problem</title><title>Journal of automated reasoning</title><description>In the futile questioning problem, one must decide whether acquisition of additional information can possibly lead to the proof of a conclusion. Solution of that problem demands evaluation of a quantified Boolean formula at the second level of the polynomial hierarchy. The same evaluation problem, called Q-ALL SAT, arises in many other applications. In this paper, we introduce a special subclass of Q-ALL SAT that is at the first level of the polynomial hierarchy. We develop a solution algorithm for the general case that uses a backtracking search and a new form of learning of clauses. Results are reported for two sets of instances involving a robot route problem and a game problem. For these instances, the algorithm is substantially faster than state-of-the-art solvers for quantified Boolean formulas.[PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Studies</subject><issn>0168-7433</issn><issn>1573-0670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkMFKAzEURYMoWKsf4C7gOvpeMplklqW0KhRU6D5MMy_tlOmkJlPBv3dKXd3N4d7LYewR4RkBzEtGsGgEgBZQWRT2ik1QGyWgNHDNJoClFaZQ6pbd5bwHAIVQTVg16_kiBPJD-0N81m1jaofdgYeY-LAjvjwNbUf860R5aGPf9lv-meKmo8M9uwl1l-nhP6dsvVys529i9fH6Pp-thJdSD4KU3kBJ0pqiluStaQolS-mDboKsvDSIviLCjYTGSE_aW2-hVtZU0o4vp-zpUntM8fv8wu3jKfXjokNVGl1qBD1SeKF8ijknCu6Y2kOdfh2COwtyF0FuFOTOgpxVf2TQVxQ</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Remshagen, Anja</creator><creator>Truemper, Klaus</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>200501</creationdate><title>An Effective Algorithm for the Futile Questioning Problem</title><author>Remshagen, Anja ; Truemper, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-e35b06e2874a2ec87d43262cf5df29c2711c9ee1b20d72ce5c8c80a387928003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Remshagen, Anja</creatorcontrib><creatorcontrib>Truemper, Klaus</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of automated reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Remshagen, Anja</au><au>Truemper, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Effective Algorithm for the Futile Questioning Problem</atitle><jtitle>Journal of automated reasoning</jtitle><date>2005-01</date><risdate>2005</risdate><volume>34</volume><issue>1</issue><spage>31</spage><epage>47</epage><pages>31-47</pages><issn>0168-7433</issn><eissn>1573-0670</eissn><abstract>In the futile questioning problem, one must decide whether acquisition of additional information can possibly lead to the proof of a conclusion. Solution of that problem demands evaluation of a quantified Boolean formula at the second level of the polynomial hierarchy. The same evaluation problem, called Q-ALL SAT, arises in many other applications. In this paper, we introduce a special subclass of Q-ALL SAT that is at the first level of the polynomial hierarchy. We develop a solution algorithm for the general case that uses a backtracking search and a new form of learning of clauses. Results are reported for two sets of instances involving a robot route problem and a game problem. For these instances, the algorithm is substantially faster than state-of-the-art solvers for quantified Boolean formulas.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10817-005-0981-8</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-7433 |
ispartof | Journal of automated reasoning, 2005-01, Vol.34 (1), p.31-47 |
issn | 0168-7433 1573-0670 |
language | eng |
recordid | cdi_proquest_journals_1367565105 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Studies |
title | An Effective Algorithm for the Futile Questioning Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Effective%20Algorithm%20for%20the%20Futile%20Questioning%20Problem&rft.jtitle=Journal%20of%20automated%20reasoning&rft.au=Remshagen,%20Anja&rft.date=2005-01&rft.volume=34&rft.issue=1&rft.spage=31&rft.epage=47&rft.pages=31-47&rft.issn=0168-7433&rft.eissn=1573-0670&rft_id=info:doi/10.1007/s10817-005-0981-8&rft_dat=%3Cproquest_cross%3E2995831771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1367565105&rft_id=info:pmid/&rfr_iscdi=true |