Electric Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled Interleaved Buck-Boost Converter

This paper describes the implementation of a hybrid energy storage system (HESS) using ultracapacitors (UCs) to protect the batteries of an electrical vehicle (EV) from high-peak currents and therefore extend their lifetime. A field-programmable gate array (FPGA) controlled interleaved bidirectional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2013-12, Vol.28 (12), p.5940-5948
Hauptverfasser: Blanes, Jose M., Gutierrez, Roberto, Garrigos, Ausias, Lizan, Jose Luis, Cuadrado, Jesus Martinez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5948
container_issue 12
container_start_page 5940
container_title IEEE transactions on power electronics
container_volume 28
creator Blanes, Jose M.
Gutierrez, Roberto
Garrigos, Ausias
Lizan, Jose Luis
Cuadrado, Jesus Martinez
description This paper describes the implementation of a hybrid energy storage system (HESS) using ultracapacitors (UCs) to protect the batteries of an electrical vehicle (EV) from high-peak currents and therefore extend their lifetime. A field-programmable gate array (FPGA) controlled interleaved bidirectional buck-boost converter working in a discontinuous conduction mode, has been designed to transfer the energy between the batteries and the UCs. The FPGA is responsible of generating all the converter gate signals and implements the control stage needed to smooth the battery current peaks. The control strategy is based on dividing the current demand of the motor into two parts (high-frequency current and low-frequency current), the batteries supply the low frequency part and the UCs supply the high-frequency part. Experimental tests have been carried out driving the EV under different scenarios. Experimental results demonstrate the good behavior of the proposed HESS, although the potential battery life extension is still under quantification. The consumption of the EV has been increased due to the converter losses, this increase is minimum under typical driving scenarios, but is quite important in start-stop driving cycles.
doi_str_mv 10.1109/TPEL.2013.2255316
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1366385720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6490065</ieee_id><sourcerecordid>2992786171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-cc004e49230a5bf63fde75b990f539413df0ed0f2c30c4298639478fbd3636803</originalsourceid><addsrcrecordid>eNo9kMFOAjEQhhujiYg-gPHSxPPidLst2yMQQBISOYDXTelOdXHdYluIvL27gXiYzGTmm38yPyGPDAaMgXpZr6bLQQqMD9JUCM7kFekxlbEEGAyvSQ_yXCS5UvyW3IWwA2CZANYjh2mNJvrK0Hf8rEyNdKxjRH-iy8oinf5GbELlGroJVfNBN3X02ui9NlV0PlDdlG3Q2Wo-ohPXRO_qGku6aFqJGvWxrccH85WMnQuxI47o29E9ubG6DvhwyX2ymU3Xk9dk-TZfTEbLxKSKx8QYgAwzlXLQYmsltyUOxVYpsIK3z_HSApZgU8PBZKnKZdsd5nZbcsllDrxPns-6e-9-DhhisXMH37QnC8al5LkYph3FzpTxLgSPttj76lv7U8Gg6NwtOneLzt3i4m6783TeqRDxn5eZApCC_wFrgXYX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1366385720</pqid></control><display><type>article</type><title>Electric Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled Interleaved Buck-Boost Converter</title><source>IEEE Electronic Library (IEL)</source><creator>Blanes, Jose M. ; Gutierrez, Roberto ; Garrigos, Ausias ; Lizan, Jose Luis ; Cuadrado, Jesus Martinez</creator><creatorcontrib>Blanes, Jose M. ; Gutierrez, Roberto ; Garrigos, Ausias ; Lizan, Jose Luis ; Cuadrado, Jesus Martinez</creatorcontrib><description>This paper describes the implementation of a hybrid energy storage system (HESS) using ultracapacitors (UCs) to protect the batteries of an electrical vehicle (EV) from high-peak currents and therefore extend their lifetime. A field-programmable gate array (FPGA) controlled interleaved bidirectional buck-boost converter working in a discontinuous conduction mode, has been designed to transfer the energy between the batteries and the UCs. The FPGA is responsible of generating all the converter gate signals and implements the control stage needed to smooth the battery current peaks. The control strategy is based on dividing the current demand of the motor into two parts (high-frequency current and low-frequency current), the batteries supply the low frequency part and the UCs supply the high-frequency part. Experimental tests have been carried out driving the EV under different scenarios. Experimental results demonstrate the good behavior of the proposed HESS, although the potential battery life extension is still under quantification. The consumption of the EV has been increased due to the converter losses, this increase is minimum under typical driving scenarios, but is quite important in start-stop driving cycles.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2013.2255316</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandwidth ; Batteries ; Battery ; Behavioral sciences ; Electric currents ; Electric potential ; electric vehicle ; Electric vehicles ; energy management ; field-programmable gate array (FPGA) ; Frequency conversion ; Integrated circuits ; interleaved dc-dc converter ; Logic gates ; Supercapacitors ; ultracapacitors (Ucs)</subject><ispartof>IEEE transactions on power electronics, 2013-12, Vol.28 (12), p.5940-5948</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-cc004e49230a5bf63fde75b990f539413df0ed0f2c30c4298639478fbd3636803</citedby><cites>FETCH-LOGICAL-c293t-cc004e49230a5bf63fde75b990f539413df0ed0f2c30c4298639478fbd3636803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6490065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6490065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blanes, Jose M.</creatorcontrib><creatorcontrib>Gutierrez, Roberto</creatorcontrib><creatorcontrib>Garrigos, Ausias</creatorcontrib><creatorcontrib>Lizan, Jose Luis</creatorcontrib><creatorcontrib>Cuadrado, Jesus Martinez</creatorcontrib><title>Electric Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled Interleaved Buck-Boost Converter</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This paper describes the implementation of a hybrid energy storage system (HESS) using ultracapacitors (UCs) to protect the batteries of an electrical vehicle (EV) from high-peak currents and therefore extend their lifetime. A field-programmable gate array (FPGA) controlled interleaved bidirectional buck-boost converter working in a discontinuous conduction mode, has been designed to transfer the energy between the batteries and the UCs. The FPGA is responsible of generating all the converter gate signals and implements the control stage needed to smooth the battery current peaks. The control strategy is based on dividing the current demand of the motor into two parts (high-frequency current and low-frequency current), the batteries supply the low frequency part and the UCs supply the high-frequency part. Experimental tests have been carried out driving the EV under different scenarios. Experimental results demonstrate the good behavior of the proposed HESS, although the potential battery life extension is still under quantification. The consumption of the EV has been increased due to the converter losses, this increase is minimum under typical driving scenarios, but is quite important in start-stop driving cycles.</description><subject>Bandwidth</subject><subject>Batteries</subject><subject>Battery</subject><subject>Behavioral sciences</subject><subject>Electric currents</subject><subject>Electric potential</subject><subject>electric vehicle</subject><subject>Electric vehicles</subject><subject>energy management</subject><subject>field-programmable gate array (FPGA)</subject><subject>Frequency conversion</subject><subject>Integrated circuits</subject><subject>interleaved dc-dc converter</subject><subject>Logic gates</subject><subject>Supercapacitors</subject><subject>ultracapacitors (Ucs)</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOAjEQhhujiYg-gPHSxPPidLst2yMQQBISOYDXTelOdXHdYluIvL27gXiYzGTmm38yPyGPDAaMgXpZr6bLQQqMD9JUCM7kFekxlbEEGAyvSQ_yXCS5UvyW3IWwA2CZANYjh2mNJvrK0Hf8rEyNdKxjRH-iy8oinf5GbELlGroJVfNBN3X02ui9NlV0PlDdlG3Q2Wo-ohPXRO_qGku6aFqJGvWxrccH85WMnQuxI47o29E9ubG6DvhwyX2ymU3Xk9dk-TZfTEbLxKSKx8QYgAwzlXLQYmsltyUOxVYpsIK3z_HSApZgU8PBZKnKZdsd5nZbcsllDrxPns-6e-9-DhhisXMH37QnC8al5LkYph3FzpTxLgSPttj76lv7U8Gg6NwtOneLzt3i4m6783TeqRDxn5eZApCC_wFrgXYX</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Blanes, Jose M.</creator><creator>Gutierrez, Roberto</creator><creator>Garrigos, Ausias</creator><creator>Lizan, Jose Luis</creator><creator>Cuadrado, Jesus Martinez</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Electric Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled Interleaved Buck-Boost Converter</title><author>Blanes, Jose M. ; Gutierrez, Roberto ; Garrigos, Ausias ; Lizan, Jose Luis ; Cuadrado, Jesus Martinez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-cc004e49230a5bf63fde75b990f539413df0ed0f2c30c4298639478fbd3636803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bandwidth</topic><topic>Batteries</topic><topic>Battery</topic><topic>Behavioral sciences</topic><topic>Electric currents</topic><topic>Electric potential</topic><topic>electric vehicle</topic><topic>Electric vehicles</topic><topic>energy management</topic><topic>field-programmable gate array (FPGA)</topic><topic>Frequency conversion</topic><topic>Integrated circuits</topic><topic>interleaved dc-dc converter</topic><topic>Logic gates</topic><topic>Supercapacitors</topic><topic>ultracapacitors (Ucs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanes, Jose M.</creatorcontrib><creatorcontrib>Gutierrez, Roberto</creatorcontrib><creatorcontrib>Garrigos, Ausias</creatorcontrib><creatorcontrib>Lizan, Jose Luis</creatorcontrib><creatorcontrib>Cuadrado, Jesus Martinez</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blanes, Jose M.</au><au>Gutierrez, Roberto</au><au>Garrigos, Ausias</au><au>Lizan, Jose Luis</au><au>Cuadrado, Jesus Martinez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled Interleaved Buck-Boost Converter</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>28</volume><issue>12</issue><spage>5940</spage><epage>5948</epage><pages>5940-5948</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This paper describes the implementation of a hybrid energy storage system (HESS) using ultracapacitors (UCs) to protect the batteries of an electrical vehicle (EV) from high-peak currents and therefore extend their lifetime. A field-programmable gate array (FPGA) controlled interleaved bidirectional buck-boost converter working in a discontinuous conduction mode, has been designed to transfer the energy between the batteries and the UCs. The FPGA is responsible of generating all the converter gate signals and implements the control stage needed to smooth the battery current peaks. The control strategy is based on dividing the current demand of the motor into two parts (high-frequency current and low-frequency current), the batteries supply the low frequency part and the UCs supply the high-frequency part. Experimental tests have been carried out driving the EV under different scenarios. Experimental results demonstrate the good behavior of the proposed HESS, although the potential battery life extension is still under quantification. The consumption of the EV has been increased due to the converter losses, this increase is minimum under typical driving scenarios, but is quite important in start-stop driving cycles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2013.2255316</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2013-12, Vol.28 (12), p.5940-5948
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_1366385720
source IEEE Electronic Library (IEL)
subjects Bandwidth
Batteries
Battery
Behavioral sciences
Electric currents
Electric potential
electric vehicle
Electric vehicles
energy management
field-programmable gate array (FPGA)
Frequency conversion
Integrated circuits
interleaved dc-dc converter
Logic gates
Supercapacitors
ultracapacitors (Ucs)
title Electric Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled Interleaved Buck-Boost Converter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20Vehicle%20Battery%20Life%20Extension%20Using%20Ultracapacitors%20and%20an%20FPGA%20Controlled%20Interleaved%20Buck-Boost%20Converter&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Blanes,%20Jose%20M.&rft.date=2013-12-01&rft.volume=28&rft.issue=12&rft.spage=5940&rft.epage=5948&rft.pages=5940-5948&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2013.2255316&rft_dat=%3Cproquest_RIE%3E2992786171%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1366385720&rft_id=info:pmid/&rft_ieee_id=6490065&rfr_iscdi=true