Electric Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled Interleaved Buck-Boost Converter
This paper describes the implementation of a hybrid energy storage system (HESS) using ultracapacitors (UCs) to protect the batteries of an electrical vehicle (EV) from high-peak currents and therefore extend their lifetime. A field-programmable gate array (FPGA) controlled interleaved bidirectional...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2013-12, Vol.28 (12), p.5940-5948 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5948 |
---|---|
container_issue | 12 |
container_start_page | 5940 |
container_title | IEEE transactions on power electronics |
container_volume | 28 |
creator | Blanes, Jose M. Gutierrez, Roberto Garrigos, Ausias Lizan, Jose Luis Cuadrado, Jesus Martinez |
description | This paper describes the implementation of a hybrid energy storage system (HESS) using ultracapacitors (UCs) to protect the batteries of an electrical vehicle (EV) from high-peak currents and therefore extend their lifetime. A field-programmable gate array (FPGA) controlled interleaved bidirectional buck-boost converter working in a discontinuous conduction mode, has been designed to transfer the energy between the batteries and the UCs. The FPGA is responsible of generating all the converter gate signals and implements the control stage needed to smooth the battery current peaks. The control strategy is based on dividing the current demand of the motor into two parts (high-frequency current and low-frequency current), the batteries supply the low frequency part and the UCs supply the high-frequency part. Experimental tests have been carried out driving the EV under different scenarios. Experimental results demonstrate the good behavior of the proposed HESS, although the potential battery life extension is still under quantification. The consumption of the EV has been increased due to the converter losses, this increase is minimum under typical driving scenarios, but is quite important in start-stop driving cycles. |
doi_str_mv | 10.1109/TPEL.2013.2255316 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1366385720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6490065</ieee_id><sourcerecordid>2992786171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-cc004e49230a5bf63fde75b990f539413df0ed0f2c30c4298639478fbd3636803</originalsourceid><addsrcrecordid>eNo9kMFOAjEQhhujiYg-gPHSxPPidLst2yMQQBISOYDXTelOdXHdYluIvL27gXiYzGTmm38yPyGPDAaMgXpZr6bLQQqMD9JUCM7kFekxlbEEGAyvSQ_yXCS5UvyW3IWwA2CZANYjh2mNJvrK0Hf8rEyNdKxjRH-iy8oinf5GbELlGroJVfNBN3X02ui9NlV0PlDdlG3Q2Wo-ohPXRO_qGku6aFqJGvWxrccH85WMnQuxI47o29E9ubG6DvhwyX2ymU3Xk9dk-TZfTEbLxKSKx8QYgAwzlXLQYmsltyUOxVYpsIK3z_HSApZgU8PBZKnKZdsd5nZbcsllDrxPns-6e-9-DhhisXMH37QnC8al5LkYph3FzpTxLgSPttj76lv7U8Gg6NwtOneLzt3i4m6783TeqRDxn5eZApCC_wFrgXYX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1366385720</pqid></control><display><type>article</type><title>Electric Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled Interleaved Buck-Boost Converter</title><source>IEEE Electronic Library (IEL)</source><creator>Blanes, Jose M. ; Gutierrez, Roberto ; Garrigos, Ausias ; Lizan, Jose Luis ; Cuadrado, Jesus Martinez</creator><creatorcontrib>Blanes, Jose M. ; Gutierrez, Roberto ; Garrigos, Ausias ; Lizan, Jose Luis ; Cuadrado, Jesus Martinez</creatorcontrib><description>This paper describes the implementation of a hybrid energy storage system (HESS) using ultracapacitors (UCs) to protect the batteries of an electrical vehicle (EV) from high-peak currents and therefore extend their lifetime. A field-programmable gate array (FPGA) controlled interleaved bidirectional buck-boost converter working in a discontinuous conduction mode, has been designed to transfer the energy between the batteries and the UCs. The FPGA is responsible of generating all the converter gate signals and implements the control stage needed to smooth the battery current peaks. The control strategy is based on dividing the current demand of the motor into two parts (high-frequency current and low-frequency current), the batteries supply the low frequency part and the UCs supply the high-frequency part. Experimental tests have been carried out driving the EV under different scenarios. Experimental results demonstrate the good behavior of the proposed HESS, although the potential battery life extension is still under quantification. The consumption of the EV has been increased due to the converter losses, this increase is minimum under typical driving scenarios, but is quite important in start-stop driving cycles.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2013.2255316</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandwidth ; Batteries ; Battery ; Behavioral sciences ; Electric currents ; Electric potential ; electric vehicle ; Electric vehicles ; energy management ; field-programmable gate array (FPGA) ; Frequency conversion ; Integrated circuits ; interleaved dc-dc converter ; Logic gates ; Supercapacitors ; ultracapacitors (Ucs)</subject><ispartof>IEEE transactions on power electronics, 2013-12, Vol.28 (12), p.5940-5948</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-cc004e49230a5bf63fde75b990f539413df0ed0f2c30c4298639478fbd3636803</citedby><cites>FETCH-LOGICAL-c293t-cc004e49230a5bf63fde75b990f539413df0ed0f2c30c4298639478fbd3636803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6490065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6490065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blanes, Jose M.</creatorcontrib><creatorcontrib>Gutierrez, Roberto</creatorcontrib><creatorcontrib>Garrigos, Ausias</creatorcontrib><creatorcontrib>Lizan, Jose Luis</creatorcontrib><creatorcontrib>Cuadrado, Jesus Martinez</creatorcontrib><title>Electric Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled Interleaved Buck-Boost Converter</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This paper describes the implementation of a hybrid energy storage system (HESS) using ultracapacitors (UCs) to protect the batteries of an electrical vehicle (EV) from high-peak currents and therefore extend their lifetime. A field-programmable gate array (FPGA) controlled interleaved bidirectional buck-boost converter working in a discontinuous conduction mode, has been designed to transfer the energy between the batteries and the UCs. The FPGA is responsible of generating all the converter gate signals and implements the control stage needed to smooth the battery current peaks. The control strategy is based on dividing the current demand of the motor into two parts (high-frequency current and low-frequency current), the batteries supply the low frequency part and the UCs supply the high-frequency part. Experimental tests have been carried out driving the EV under different scenarios. Experimental results demonstrate the good behavior of the proposed HESS, although the potential battery life extension is still under quantification. The consumption of the EV has been increased due to the converter losses, this increase is minimum under typical driving scenarios, but is quite important in start-stop driving cycles.</description><subject>Bandwidth</subject><subject>Batteries</subject><subject>Battery</subject><subject>Behavioral sciences</subject><subject>Electric currents</subject><subject>Electric potential</subject><subject>electric vehicle</subject><subject>Electric vehicles</subject><subject>energy management</subject><subject>field-programmable gate array (FPGA)</subject><subject>Frequency conversion</subject><subject>Integrated circuits</subject><subject>interleaved dc-dc converter</subject><subject>Logic gates</subject><subject>Supercapacitors</subject><subject>ultracapacitors (Ucs)</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOAjEQhhujiYg-gPHSxPPidLst2yMQQBISOYDXTelOdXHdYluIvL27gXiYzGTmm38yPyGPDAaMgXpZr6bLQQqMD9JUCM7kFekxlbEEGAyvSQ_yXCS5UvyW3IWwA2CZANYjh2mNJvrK0Hf8rEyNdKxjRH-iy8oinf5GbELlGroJVfNBN3X02ui9NlV0PlDdlG3Q2Wo-ohPXRO_qGku6aFqJGvWxrccH85WMnQuxI47o29E9ubG6DvhwyX2ymU3Xk9dk-TZfTEbLxKSKx8QYgAwzlXLQYmsltyUOxVYpsIK3z_HSApZgU8PBZKnKZdsd5nZbcsllDrxPns-6e-9-DhhisXMH37QnC8al5LkYph3FzpTxLgSPttj76lv7U8Gg6NwtOneLzt3i4m6783TeqRDxn5eZApCC_wFrgXYX</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Blanes, Jose M.</creator><creator>Gutierrez, Roberto</creator><creator>Garrigos, Ausias</creator><creator>Lizan, Jose Luis</creator><creator>Cuadrado, Jesus Martinez</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Electric Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled Interleaved Buck-Boost Converter</title><author>Blanes, Jose M. ; Gutierrez, Roberto ; Garrigos, Ausias ; Lizan, Jose Luis ; Cuadrado, Jesus Martinez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-cc004e49230a5bf63fde75b990f539413df0ed0f2c30c4298639478fbd3636803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bandwidth</topic><topic>Batteries</topic><topic>Battery</topic><topic>Behavioral sciences</topic><topic>Electric currents</topic><topic>Electric potential</topic><topic>electric vehicle</topic><topic>Electric vehicles</topic><topic>energy management</topic><topic>field-programmable gate array (FPGA)</topic><topic>Frequency conversion</topic><topic>Integrated circuits</topic><topic>interleaved dc-dc converter</topic><topic>Logic gates</topic><topic>Supercapacitors</topic><topic>ultracapacitors (Ucs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanes, Jose M.</creatorcontrib><creatorcontrib>Gutierrez, Roberto</creatorcontrib><creatorcontrib>Garrigos, Ausias</creatorcontrib><creatorcontrib>Lizan, Jose Luis</creatorcontrib><creatorcontrib>Cuadrado, Jesus Martinez</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blanes, Jose M.</au><au>Gutierrez, Roberto</au><au>Garrigos, Ausias</au><au>Lizan, Jose Luis</au><au>Cuadrado, Jesus Martinez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled Interleaved Buck-Boost Converter</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>28</volume><issue>12</issue><spage>5940</spage><epage>5948</epage><pages>5940-5948</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This paper describes the implementation of a hybrid energy storage system (HESS) using ultracapacitors (UCs) to protect the batteries of an electrical vehicle (EV) from high-peak currents and therefore extend their lifetime. A field-programmable gate array (FPGA) controlled interleaved bidirectional buck-boost converter working in a discontinuous conduction mode, has been designed to transfer the energy between the batteries and the UCs. The FPGA is responsible of generating all the converter gate signals and implements the control stage needed to smooth the battery current peaks. The control strategy is based on dividing the current demand of the motor into two parts (high-frequency current and low-frequency current), the batteries supply the low frequency part and the UCs supply the high-frequency part. Experimental tests have been carried out driving the EV under different scenarios. Experimental results demonstrate the good behavior of the proposed HESS, although the potential battery life extension is still under quantification. The consumption of the EV has been increased due to the converter losses, this increase is minimum under typical driving scenarios, but is quite important in start-stop driving cycles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2013.2255316</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2013-12, Vol.28 (12), p.5940-5948 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_proquest_journals_1366385720 |
source | IEEE Electronic Library (IEL) |
subjects | Bandwidth Batteries Battery Behavioral sciences Electric currents Electric potential electric vehicle Electric vehicles energy management field-programmable gate array (FPGA) Frequency conversion Integrated circuits interleaved dc-dc converter Logic gates Supercapacitors ultracapacitors (Ucs) |
title | Electric Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled Interleaved Buck-Boost Converter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20Vehicle%20Battery%20Life%20Extension%20Using%20Ultracapacitors%20and%20an%20FPGA%20Controlled%20Interleaved%20Buck-Boost%20Converter&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Blanes,%20Jose%20M.&rft.date=2013-12-01&rft.volume=28&rft.issue=12&rft.spage=5940&rft.epage=5948&rft.pages=5940-5948&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2013.2255316&rft_dat=%3Cproquest_RIE%3E2992786171%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1366385720&rft_id=info:pmid/&rft_ieee_id=6490065&rfr_iscdi=true |