WarningBird: A Near Real-Time Detection System for Suspicious URLs in Twitter Stream

Twitter is prone to malicious tweets containing URLs for spar, phishing, and malware distribution. Conventional Twitter spar detection schemes utilize account features such as the ratio of tweets containing URLs and the account creation date, or relation features in the Twitter graph. These detectio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on dependable and secure computing 2013-05, Vol.10 (3), p.183-195
Hauptverfasser: Lee, Sangho, Kim, Jong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue 3
container_start_page 183
container_title IEEE transactions on dependable and secure computing
container_volume 10
creator Lee, Sangho
Kim, Jong
description Twitter is prone to malicious tweets containing URLs for spar, phishing, and malware distribution. Conventional Twitter spar detection schemes utilize account features such as the ratio of tweets containing URLs and the account creation date, or relation features in the Twitter graph. These detection schemes are ineffective against feature fabrications or consume much time and resources. Conventional suspicious URL detection schemes utilize several features including lexical features of URLs, URL redirection, HTIUIL content, and dynamic behavior. However, evading techniques such as time-based evasion and crawler evasion exist. in this paper, we propose WARNINGBIRD, a suspicious URL detection system for Twitter. Our system investigates correlations of URL redirect chains extracted from several tweets. Because attackers have limited resources and usually reuse them, their URL redirect chains frequently share the same URLs. We develop methods to discover correlated URL redirect chains using the frequently shared URLs and to determine their suspiciousness. We collect numerous tweets from the Twitter public timeline and build a statistical classifier using them. Evaluation results show that our classifier accurately and efficiently detects suspicious URLs. We also present WARNINGBIRD as a near real-time system for classifying suspicious URLs in the Twitter stream.
doi_str_mv 10.1109/TDSC.2013.3
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1366053535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6409356</ieee_id><sourcerecordid>2991961991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-9d351ed852142ac2b1a2ba0a239bd7849662d52e8127467c5c604b82e2d697503</originalsourceid><addsrcrecordid>eNpd0EtLw0AQB_BFFKzVk0cvC14ESd13st5q6wuKQpviMWySqWzJo-5ukH57EyoeZA4zMD-G4Y_QJSUTSom-S-er2YQRyif8CI2oFjQihCbH_SyFjKSO6Sk6835LCBOJFiOUfhjX2ObzwbryHk_xGxiHl2CqKLU14DkEKIJtG7za-wA13rQOrzq_s4VtO4_Xy4XHtsHptw0B-lVwYOpzdLIxlYeL3z5G66fHdPYSLd6fX2fTRVQwIUKkSy4plIlkVDBTsJwalhtiGNd5GSdCK8VKySChLBYqLmShiMgTBqxUOpaEj9HN4e7OtV8d-JDV1hdQVaaB_ruMciWJVDQWPb3-R7dt55r-u0EpIvlQY3R7UIVrvXewyXbO1sbtM0qyIeFsSDgbEs54r68O2gLAn1SCaC4V_wHWb3P8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1366053535</pqid></control><display><type>article</type><title>WarningBird: A Near Real-Time Detection System for Suspicious URLs in Twitter Stream</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Sangho ; Kim, Jong</creator><creatorcontrib>Lee, Sangho ; Kim, Jong</creatorcontrib><description>Twitter is prone to malicious tweets containing URLs for spar, phishing, and malware distribution. Conventional Twitter spar detection schemes utilize account features such as the ratio of tweets containing URLs and the account creation date, or relation features in the Twitter graph. These detection schemes are ineffective against feature fabrications or consume much time and resources. Conventional suspicious URL detection schemes utilize several features including lexical features of URLs, URL redirection, HTIUIL content, and dynamic behavior. However, evading techniques such as time-based evasion and crawler evasion exist. in this paper, we propose WARNINGBIRD, a suspicious URL detection system for Twitter. Our system investigates correlations of URL redirect chains extracted from several tweets. Because attackers have limited resources and usually reuse them, their URL redirect chains frequently share the same URLs. We develop methods to discover correlated URL redirect chains using the frequently shared URLs and to determine their suspiciousness. We collect numerous tweets from the Twitter public timeline and build a statistical classifier using them. Evaluation results show that our classifier accurately and efficiently detects suspicious URLs. We also present WARNINGBIRD as a near real-time system for classifying suspicious URLs in the Twitter stream.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2013.3</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>Browsers ; classification ; Classifiers ; conditional redirection ; Construction ; Correlation ; Correlation analysis ; Crawlers ; Dynamical systems ; Dynamics ; Feature extraction ; Intrusion detection systems ; IP networks ; Network security ; Real time ; Servers ; Social networks ; Spamming ; Streams ; Studies ; Suspicious URL ; Text messaging ; Training ; Twitter ; URL redirection ; URLs</subject><ispartof>IEEE transactions on dependable and secure computing, 2013-05, Vol.10 (3), p.183-195</ispartof><rights>Copyright IEEE Computer Society May/Jun 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c244t-9d351ed852142ac2b1a2ba0a239bd7849662d52e8127467c5c604b82e2d697503</citedby><cites>FETCH-LOGICAL-c244t-9d351ed852142ac2b1a2ba0a239bd7849662d52e8127467c5c604b82e2d697503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6409356$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6409356$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Sangho</creatorcontrib><creatorcontrib>Kim, Jong</creatorcontrib><title>WarningBird: A Near Real-Time Detection System for Suspicious URLs in Twitter Stream</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><description>Twitter is prone to malicious tweets containing URLs for spar, phishing, and malware distribution. Conventional Twitter spar detection schemes utilize account features such as the ratio of tweets containing URLs and the account creation date, or relation features in the Twitter graph. These detection schemes are ineffective against feature fabrications or consume much time and resources. Conventional suspicious URL detection schemes utilize several features including lexical features of URLs, URL redirection, HTIUIL content, and dynamic behavior. However, evading techniques such as time-based evasion and crawler evasion exist. in this paper, we propose WARNINGBIRD, a suspicious URL detection system for Twitter. Our system investigates correlations of URL redirect chains extracted from several tweets. Because attackers have limited resources and usually reuse them, their URL redirect chains frequently share the same URLs. We develop methods to discover correlated URL redirect chains using the frequently shared URLs and to determine their suspiciousness. We collect numerous tweets from the Twitter public timeline and build a statistical classifier using them. Evaluation results show that our classifier accurately and efficiently detects suspicious URLs. We also present WARNINGBIRD as a near real-time system for classifying suspicious URLs in the Twitter stream.</description><subject>Browsers</subject><subject>classification</subject><subject>Classifiers</subject><subject>conditional redirection</subject><subject>Construction</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Crawlers</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Feature extraction</subject><subject>Intrusion detection systems</subject><subject>IP networks</subject><subject>Network security</subject><subject>Real time</subject><subject>Servers</subject><subject>Social networks</subject><subject>Spamming</subject><subject>Streams</subject><subject>Studies</subject><subject>Suspicious URL</subject><subject>Text messaging</subject><subject>Training</subject><subject>Twitter</subject><subject>URL redirection</subject><subject>URLs</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0EtLw0AQB_BFFKzVk0cvC14ESd13st5q6wuKQpviMWySqWzJo-5ukH57EyoeZA4zMD-G4Y_QJSUTSom-S-er2YQRyif8CI2oFjQihCbH_SyFjKSO6Sk6835LCBOJFiOUfhjX2ObzwbryHk_xGxiHl2CqKLU14DkEKIJtG7za-wA13rQOrzq_s4VtO4_Xy4XHtsHptw0B-lVwYOpzdLIxlYeL3z5G66fHdPYSLd6fX2fTRVQwIUKkSy4plIlkVDBTsJwalhtiGNd5GSdCK8VKySChLBYqLmShiMgTBqxUOpaEj9HN4e7OtV8d-JDV1hdQVaaB_ruMciWJVDQWPb3-R7dt55r-u0EpIvlQY3R7UIVrvXewyXbO1sbtM0qyIeFsSDgbEs54r68O2gLAn1SCaC4V_wHWb3P8</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Lee, Sangho</creator><creator>Kim, Jong</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201305</creationdate><title>WarningBird: A Near Real-Time Detection System for Suspicious URLs in Twitter Stream</title><author>Lee, Sangho ; Kim, Jong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-9d351ed852142ac2b1a2ba0a239bd7849662d52e8127467c5c604b82e2d697503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Browsers</topic><topic>classification</topic><topic>Classifiers</topic><topic>conditional redirection</topic><topic>Construction</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Crawlers</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Feature extraction</topic><topic>Intrusion detection systems</topic><topic>IP networks</topic><topic>Network security</topic><topic>Real time</topic><topic>Servers</topic><topic>Social networks</topic><topic>Spamming</topic><topic>Streams</topic><topic>Studies</topic><topic>Suspicious URL</topic><topic>Text messaging</topic><topic>Training</topic><topic>Twitter</topic><topic>URL redirection</topic><topic>URLs</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sangho</creatorcontrib><creatorcontrib>Kim, Jong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Sangho</au><au>Kim, Jong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WarningBird: A Near Real-Time Detection System for Suspicious URLs in Twitter Stream</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><date>2013-05</date><risdate>2013</risdate><volume>10</volume><issue>3</issue><spage>183</spage><epage>195</epage><pages>183-195</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Twitter is prone to malicious tweets containing URLs for spar, phishing, and malware distribution. Conventional Twitter spar detection schemes utilize account features such as the ratio of tweets containing URLs and the account creation date, or relation features in the Twitter graph. These detection schemes are ineffective against feature fabrications or consume much time and resources. Conventional suspicious URL detection schemes utilize several features including lexical features of URLs, URL redirection, HTIUIL content, and dynamic behavior. However, evading techniques such as time-based evasion and crawler evasion exist. in this paper, we propose WARNINGBIRD, a suspicious URL detection system for Twitter. Our system investigates correlations of URL redirect chains extracted from several tweets. Because attackers have limited resources and usually reuse them, their URL redirect chains frequently share the same URLs. We develop methods to discover correlated URL redirect chains using the frequently shared URLs and to determine their suspiciousness. We collect numerous tweets from the Twitter public timeline and build a statistical classifier using them. Evaluation results show that our classifier accurately and efficiently detects suspicious URLs. We also present WARNINGBIRD as a near real-time system for classifying suspicious URLs in the Twitter stream.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/TDSC.2013.3</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5971
ispartof IEEE transactions on dependable and secure computing, 2013-05, Vol.10 (3), p.183-195
issn 1545-5971
1941-0018
language eng
recordid cdi_proquest_journals_1366053535
source IEEE Electronic Library (IEL)
subjects Browsers
classification
Classifiers
conditional redirection
Construction
Correlation
Correlation analysis
Crawlers
Dynamical systems
Dynamics
Feature extraction
Intrusion detection systems
IP networks
Network security
Real time
Servers
Social networks
Spamming
Streams
Studies
Suspicious URL
Text messaging
Training
Twitter
URL redirection
URLs
title WarningBird: A Near Real-Time Detection System for Suspicious URLs in Twitter Stream
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WarningBird:%20A%20Near%20Real-Time%20Detection%20System%20for%20Suspicious%20URLs%20in%20Twitter%20Stream&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=Lee,%20Sangho&rft.date=2013-05&rft.volume=10&rft.issue=3&rft.spage=183&rft.epage=195&rft.pages=183-195&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2013.3&rft_dat=%3Cproquest_RIE%3E2991961991%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1366053535&rft_id=info:pmid/&rft_ieee_id=6409356&rfr_iscdi=true