Maximizing H-Colorings of a Regular Graph

For graphs G and H, a homomorphism from G to H, or H‐coloring of G, is an adjacency preserving map from the vertex set of G to the vertex set of H. Our concern in this article is the maximum number of H‐colorings admitted by an n‐vertex, d‐regular graph, for each H. Specifically, writing hom(G,H) fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2013-05, Vol.73 (1), p.66-84
1. Verfasser: Galvin, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 1
container_start_page 66
container_title Journal of graph theory
container_volume 73
creator Galvin, David
description For graphs G and H, a homomorphism from G to H, or H‐coloring of G, is an adjacency preserving map from the vertex set of G to the vertex set of H. Our concern in this article is the maximum number of H‐colorings admitted by an n‐vertex, d‐regular graph, for each H. Specifically, writing hom(G,H) for the number of H‐colorings admitted by G, we conjecture that for any simple finite graph H (perhaps with loops) and any simple finite n‐vertex, d‐regular, loopless graph G, we have hom(G,H)≤maxhom(Kd,d,H)n2d,hom(Kd+1,H)nd+1,where Kd,d is the complete bipartite graph with d vertices in each partition class, and Kd+1 is the complete graph on d+1 vertices.Results of Zhao confirm this conjecture for some choices of H for which the maximum is achieved by hom(Kd,d,H)n/2d. Here, we exhibit for the first time infinitely many nontrivial triples (n,d,H) for which the conjecture is true and for which the maximum is achieved by hom(Kd+1,H)n/(d+1).We also give sharp estimates for hom(Kd,d,H) and hom(Kd+1,H) in terms of some structural parameters of H. This allows us to characterize those H for which hom(Kd,d,H)1/2d is eventually (for all sufficiently large d) larger than hom(Kd+1,H)1/(d+1) and those for which it is eventually smaller, and to show that this dichotomy covers all nontrivial H. Our estimates also allow us to obtain asymptotic evidence for the conjecture in the following form. For fixed H, for all d‐regular G, we have hom(G,H)1|V(G)|≤(1+o(1))maxhom(Kd,d,H)12d,hom(Kd+1,H)1d+1,where o(1)→0 as d→∞. More precise results are obtained in some special cases.
doi_str_mv 10.1002/jgt.21658
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1365696694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2989948721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3708-e07553129c99965e5eed6c4e721e2c9d5c669df35f2ef411dac7d88c147d7bb83</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKsL_8GAqy7S5mPytZRBp0qrIrWCm5BmMnXq1KlJi62_3uioO1fv8jjnPbgAnGLUxwiRwWK-7hPMmdwDHYyUgAhjuQ86iPIUKkTSQ3AUwgLFNUOyA3pjs62W1Uf1Ok-GMGvqxscYkqZMTHLv5pva-CT3ZvV8DA5KUwd38jO74OHyYpIN4eg2v8rOR9BSgSR0SDBGMVFWKcWZY84V3KZOEOyIVQWznKuipKwkrkwxLowVhZQWp6IQs5mkXXDW3l355m3jwlovmo1_jS81ppxxFf00Ur2Wsr4JwbtSr3y1NH6nMdJfTejYhP5uIrKDln2varf7H9TX-eTXgK1RhbXb_hnGv2guqGD68SbXd9PpWLGnTAv6CSW5bLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365696694</pqid></control><display><type>article</type><title>Maximizing H-Colorings of a Regular Graph</title><source>Access via Wiley Online Library</source><creator>Galvin, David</creator><creatorcontrib>Galvin, David</creatorcontrib><description>For graphs G and H, a homomorphism from G to H, or H‐coloring of G, is an adjacency preserving map from the vertex set of G to the vertex set of H. Our concern in this article is the maximum number of H‐colorings admitted by an n‐vertex, d‐regular graph, for each H. Specifically, writing hom(G,H) for the number of H‐colorings admitted by G, we conjecture that for any simple finite graph H (perhaps with loops) and any simple finite n‐vertex, d‐regular, loopless graph G, we have hom(G,H)≤maxhom(Kd,d,H)n2d,hom(Kd+1,H)nd+1,where Kd,d is the complete bipartite graph with d vertices in each partition class, and Kd+1 is the complete graph on d+1 vertices.Results of Zhao confirm this conjecture for some choices of H for which the maximum is achieved by hom(Kd,d,H)n/2d. Here, we exhibit for the first time infinitely many nontrivial triples (n,d,H) for which the conjecture is true and for which the maximum is achieved by hom(Kd+1,H)n/(d+1).We also give sharp estimates for hom(Kd,d,H) and hom(Kd+1,H) in terms of some structural parameters of H. This allows us to characterize those H for which hom(Kd,d,H)1/2d is eventually (for all sufficiently large d) larger than hom(Kd+1,H)1/(d+1) and those for which it is eventually smaller, and to show that this dichotomy covers all nontrivial H. Our estimates also allow us to obtain asymptotic evidence for the conjecture in the following form. For fixed H, for all d‐regular G, we have hom(G,H)1|V(G)|≤(1+o(1))maxhom(Kd,d,H)12d,hom(Kd+1,H)1d+1,where o(1)→0 as d→∞. More precise results are obtained in some special cases.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.21658</identifier><identifier>CODEN: JGTHDO</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Algorithms ; graph coloring ; graph homomorphisms ; Studies</subject><ispartof>Journal of graph theory, 2013-05, Vol.73 (1), p.66-84</ispartof><rights>2012 Wiley Periodicals, Inc.</rights><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3708-e07553129c99965e5eed6c4e721e2c9d5c669df35f2ef411dac7d88c147d7bb83</citedby><cites>FETCH-LOGICAL-c3708-e07553129c99965e5eed6c4e721e2c9d5c669df35f2ef411dac7d88c147d7bb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.21658$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.21658$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Galvin, David</creatorcontrib><title>Maximizing H-Colorings of a Regular Graph</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>For graphs G and H, a homomorphism from G to H, or H‐coloring of G, is an adjacency preserving map from the vertex set of G to the vertex set of H. Our concern in this article is the maximum number of H‐colorings admitted by an n‐vertex, d‐regular graph, for each H. Specifically, writing hom(G,H) for the number of H‐colorings admitted by G, we conjecture that for any simple finite graph H (perhaps with loops) and any simple finite n‐vertex, d‐regular, loopless graph G, we have hom(G,H)≤maxhom(Kd,d,H)n2d,hom(Kd+1,H)nd+1,where Kd,d is the complete bipartite graph with d vertices in each partition class, and Kd+1 is the complete graph on d+1 vertices.Results of Zhao confirm this conjecture for some choices of H for which the maximum is achieved by hom(Kd,d,H)n/2d. Here, we exhibit for the first time infinitely many nontrivial triples (n,d,H) for which the conjecture is true and for which the maximum is achieved by hom(Kd+1,H)n/(d+1).We also give sharp estimates for hom(Kd,d,H) and hom(Kd+1,H) in terms of some structural parameters of H. This allows us to characterize those H for which hom(Kd,d,H)1/2d is eventually (for all sufficiently large d) larger than hom(Kd+1,H)1/(d+1) and those for which it is eventually smaller, and to show that this dichotomy covers all nontrivial H. Our estimates also allow us to obtain asymptotic evidence for the conjecture in the following form. For fixed H, for all d‐regular G, we have hom(G,H)1|V(G)|≤(1+o(1))maxhom(Kd,d,H)12d,hom(Kd+1,H)1d+1,where o(1)→0 as d→∞. More precise results are obtained in some special cases.</description><subject>Algorithms</subject><subject>graph coloring</subject><subject>graph homomorphisms</subject><subject>Studies</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKsL_8GAqy7S5mPytZRBp0qrIrWCm5BmMnXq1KlJi62_3uioO1fv8jjnPbgAnGLUxwiRwWK-7hPMmdwDHYyUgAhjuQ86iPIUKkTSQ3AUwgLFNUOyA3pjs62W1Uf1Ok-GMGvqxscYkqZMTHLv5pva-CT3ZvV8DA5KUwd38jO74OHyYpIN4eg2v8rOR9BSgSR0SDBGMVFWKcWZY84V3KZOEOyIVQWznKuipKwkrkwxLowVhZQWp6IQs5mkXXDW3l355m3jwlovmo1_jS81ppxxFf00Ur2Wsr4JwbtSr3y1NH6nMdJfTejYhP5uIrKDln2varf7H9TX-eTXgK1RhbXb_hnGv2guqGD68SbXd9PpWLGnTAv6CSW5bLA</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Galvin, David</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201305</creationdate><title>Maximizing H-Colorings of a Regular Graph</title><author>Galvin, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3708-e07553129c99965e5eed6c4e721e2c9d5c669df35f2ef411dac7d88c147d7bb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>graph coloring</topic><topic>graph homomorphisms</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galvin, David</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galvin, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing H-Colorings of a Regular Graph</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>2013-05</date><risdate>2013</risdate><volume>73</volume><issue>1</issue><spage>66</spage><epage>84</epage><pages>66-84</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><coden>JGTHDO</coden><abstract>For graphs G and H, a homomorphism from G to H, or H‐coloring of G, is an adjacency preserving map from the vertex set of G to the vertex set of H. Our concern in this article is the maximum number of H‐colorings admitted by an n‐vertex, d‐regular graph, for each H. Specifically, writing hom(G,H) for the number of H‐colorings admitted by G, we conjecture that for any simple finite graph H (perhaps with loops) and any simple finite n‐vertex, d‐regular, loopless graph G, we have hom(G,H)≤maxhom(Kd,d,H)n2d,hom(Kd+1,H)nd+1,where Kd,d is the complete bipartite graph with d vertices in each partition class, and Kd+1 is the complete graph on d+1 vertices.Results of Zhao confirm this conjecture for some choices of H for which the maximum is achieved by hom(Kd,d,H)n/2d. Here, we exhibit for the first time infinitely many nontrivial triples (n,d,H) for which the conjecture is true and for which the maximum is achieved by hom(Kd+1,H)n/(d+1).We also give sharp estimates for hom(Kd,d,H) and hom(Kd+1,H) in terms of some structural parameters of H. This allows us to characterize those H for which hom(Kd,d,H)1/2d is eventually (for all sufficiently large d) larger than hom(Kd+1,H)1/(d+1) and those for which it is eventually smaller, and to show that this dichotomy covers all nontrivial H. Our estimates also allow us to obtain asymptotic evidence for the conjecture in the following form. For fixed H, for all d‐regular G, we have hom(G,H)1|V(G)|≤(1+o(1))maxhom(Kd,d,H)12d,hom(Kd+1,H)1d+1,where o(1)→0 as d→∞. More precise results are obtained in some special cases.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgt.21658</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2013-05, Vol.73 (1), p.66-84
issn 0364-9024
1097-0118
language eng
recordid cdi_proquest_journals_1365696694
source Access via Wiley Online Library
subjects Algorithms
graph coloring
graph homomorphisms
Studies
title Maximizing H-Colorings of a Regular Graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20H-Colorings%20of%20a%20Regular%20Graph&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Galvin,%20David&rft.date=2013-05&rft.volume=73&rft.issue=1&rft.spage=66&rft.epage=84&rft.pages=66-84&rft.issn=0364-9024&rft.eissn=1097-0118&rft.coden=JGTHDO&rft_id=info:doi/10.1002/jgt.21658&rft_dat=%3Cproquest_cross%3E2989948721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365696694&rft_id=info:pmid/&rfr_iscdi=true