Maximizing H-Colorings of a Regular Graph
For graphs G and H, a homomorphism from G to H, or H‐coloring of G, is an adjacency preserving map from the vertex set of G to the vertex set of H. Our concern in this article is the maximum number of H‐colorings admitted by an n‐vertex, d‐regular graph, for each H. Specifically, writing hom(G,H) fo...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2013-05, Vol.73 (1), p.66-84 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 66 |
container_title | Journal of graph theory |
container_volume | 73 |
creator | Galvin, David |
description | For graphs G and H, a homomorphism from G to H, or H‐coloring of G, is an adjacency preserving map from the vertex set of G to the vertex set of H. Our concern in this article is the maximum number of H‐colorings admitted by an n‐vertex, d‐regular graph, for each H. Specifically, writing hom(G,H) for the number of H‐colorings admitted by G, we conjecture that for any simple finite graph H (perhaps with loops) and any simple finite n‐vertex, d‐regular, loopless graph G, we have
hom(G,H)≤maxhom(Kd,d,H)n2d,hom(Kd+1,H)nd+1,where Kd,d is the complete bipartite graph with d vertices in each partition class, and Kd+1 is the complete graph on d+1 vertices.Results of Zhao confirm this conjecture for some choices of H for which the maximum is achieved by hom(Kd,d,H)n/2d. Here, we exhibit for the first time infinitely many nontrivial triples (n,d,H) for which the conjecture is true and for which the maximum is achieved by hom(Kd+1,H)n/(d+1).We also give sharp estimates for hom(Kd,d,H) and hom(Kd+1,H) in terms of some structural parameters of H. This allows us to characterize those H for which hom(Kd,d,H)1/2d is eventually (for all sufficiently large d) larger than hom(Kd+1,H)1/(d+1) and those for which it is eventually smaller, and to show that this dichotomy covers all nontrivial H. Our estimates also allow us to obtain asymptotic evidence for the conjecture in the following form. For fixed H, for all d‐regular G, we have
hom(G,H)1|V(G)|≤(1+o(1))maxhom(Kd,d,H)12d,hom(Kd+1,H)1d+1,where o(1)→0 as d→∞. More precise results are obtained in some special cases. |
doi_str_mv | 10.1002/jgt.21658 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1365696694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2989948721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3708-e07553129c99965e5eed6c4e721e2c9d5c669df35f2ef411dac7d88c147d7bb83</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKsL_8GAqy7S5mPytZRBp0qrIrWCm5BmMnXq1KlJi62_3uioO1fv8jjnPbgAnGLUxwiRwWK-7hPMmdwDHYyUgAhjuQ86iPIUKkTSQ3AUwgLFNUOyA3pjs62W1Uf1Ok-GMGvqxscYkqZMTHLv5pva-CT3ZvV8DA5KUwd38jO74OHyYpIN4eg2v8rOR9BSgSR0SDBGMVFWKcWZY84V3KZOEOyIVQWznKuipKwkrkwxLowVhZQWp6IQs5mkXXDW3l355m3jwlovmo1_jS81ppxxFf00Ur2Wsr4JwbtSr3y1NH6nMdJfTejYhP5uIrKDln2varf7H9TX-eTXgK1RhbXb_hnGv2guqGD68SbXd9PpWLGnTAv6CSW5bLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365696694</pqid></control><display><type>article</type><title>Maximizing H-Colorings of a Regular Graph</title><source>Access via Wiley Online Library</source><creator>Galvin, David</creator><creatorcontrib>Galvin, David</creatorcontrib><description>For graphs G and H, a homomorphism from G to H, or H‐coloring of G, is an adjacency preserving map from the vertex set of G to the vertex set of H. Our concern in this article is the maximum number of H‐colorings admitted by an n‐vertex, d‐regular graph, for each H. Specifically, writing hom(G,H) for the number of H‐colorings admitted by G, we conjecture that for any simple finite graph H (perhaps with loops) and any simple finite n‐vertex, d‐regular, loopless graph G, we have
hom(G,H)≤maxhom(Kd,d,H)n2d,hom(Kd+1,H)nd+1,where Kd,d is the complete bipartite graph with d vertices in each partition class, and Kd+1 is the complete graph on d+1 vertices.Results of Zhao confirm this conjecture for some choices of H for which the maximum is achieved by hom(Kd,d,H)n/2d. Here, we exhibit for the first time infinitely many nontrivial triples (n,d,H) for which the conjecture is true and for which the maximum is achieved by hom(Kd+1,H)n/(d+1).We also give sharp estimates for hom(Kd,d,H) and hom(Kd+1,H) in terms of some structural parameters of H. This allows us to characterize those H for which hom(Kd,d,H)1/2d is eventually (for all sufficiently large d) larger than hom(Kd+1,H)1/(d+1) and those for which it is eventually smaller, and to show that this dichotomy covers all nontrivial H. Our estimates also allow us to obtain asymptotic evidence for the conjecture in the following form. For fixed H, for all d‐regular G, we have
hom(G,H)1|V(G)|≤(1+o(1))maxhom(Kd,d,H)12d,hom(Kd+1,H)1d+1,where o(1)→0 as d→∞. More precise results are obtained in some special cases.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.21658</identifier><identifier>CODEN: JGTHDO</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Algorithms ; graph coloring ; graph homomorphisms ; Studies</subject><ispartof>Journal of graph theory, 2013-05, Vol.73 (1), p.66-84</ispartof><rights>2012 Wiley Periodicals, Inc.</rights><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3708-e07553129c99965e5eed6c4e721e2c9d5c669df35f2ef411dac7d88c147d7bb83</citedby><cites>FETCH-LOGICAL-c3708-e07553129c99965e5eed6c4e721e2c9d5c669df35f2ef411dac7d88c147d7bb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.21658$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.21658$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Galvin, David</creatorcontrib><title>Maximizing H-Colorings of a Regular Graph</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>For graphs G and H, a homomorphism from G to H, or H‐coloring of G, is an adjacency preserving map from the vertex set of G to the vertex set of H. Our concern in this article is the maximum number of H‐colorings admitted by an n‐vertex, d‐regular graph, for each H. Specifically, writing hom(G,H) for the number of H‐colorings admitted by G, we conjecture that for any simple finite graph H (perhaps with loops) and any simple finite n‐vertex, d‐regular, loopless graph G, we have
hom(G,H)≤maxhom(Kd,d,H)n2d,hom(Kd+1,H)nd+1,where Kd,d is the complete bipartite graph with d vertices in each partition class, and Kd+1 is the complete graph on d+1 vertices.Results of Zhao confirm this conjecture for some choices of H for which the maximum is achieved by hom(Kd,d,H)n/2d. Here, we exhibit for the first time infinitely many nontrivial triples (n,d,H) for which the conjecture is true and for which the maximum is achieved by hom(Kd+1,H)n/(d+1).We also give sharp estimates for hom(Kd,d,H) and hom(Kd+1,H) in terms of some structural parameters of H. This allows us to characterize those H for which hom(Kd,d,H)1/2d is eventually (for all sufficiently large d) larger than hom(Kd+1,H)1/(d+1) and those for which it is eventually smaller, and to show that this dichotomy covers all nontrivial H. Our estimates also allow us to obtain asymptotic evidence for the conjecture in the following form. For fixed H, for all d‐regular G, we have
hom(G,H)1|V(G)|≤(1+o(1))maxhom(Kd,d,H)12d,hom(Kd+1,H)1d+1,where o(1)→0 as d→∞. More precise results are obtained in some special cases.</description><subject>Algorithms</subject><subject>graph coloring</subject><subject>graph homomorphisms</subject><subject>Studies</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKsL_8GAqy7S5mPytZRBp0qrIrWCm5BmMnXq1KlJi62_3uioO1fv8jjnPbgAnGLUxwiRwWK-7hPMmdwDHYyUgAhjuQ86iPIUKkTSQ3AUwgLFNUOyA3pjs62W1Uf1Ok-GMGvqxscYkqZMTHLv5pva-CT3ZvV8DA5KUwd38jO74OHyYpIN4eg2v8rOR9BSgSR0SDBGMVFWKcWZY84V3KZOEOyIVQWznKuipKwkrkwxLowVhZQWp6IQs5mkXXDW3l355m3jwlovmo1_jS81ppxxFf00Ur2Wsr4JwbtSr3y1NH6nMdJfTejYhP5uIrKDln2varf7H9TX-eTXgK1RhbXb_hnGv2guqGD68SbXd9PpWLGnTAv6CSW5bLA</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Galvin, David</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201305</creationdate><title>Maximizing H-Colorings of a Regular Graph</title><author>Galvin, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3708-e07553129c99965e5eed6c4e721e2c9d5c669df35f2ef411dac7d88c147d7bb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>graph coloring</topic><topic>graph homomorphisms</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galvin, David</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galvin, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing H-Colorings of a Regular Graph</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>2013-05</date><risdate>2013</risdate><volume>73</volume><issue>1</issue><spage>66</spage><epage>84</epage><pages>66-84</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><coden>JGTHDO</coden><abstract>For graphs G and H, a homomorphism from G to H, or H‐coloring of G, is an adjacency preserving map from the vertex set of G to the vertex set of H. Our concern in this article is the maximum number of H‐colorings admitted by an n‐vertex, d‐regular graph, for each H. Specifically, writing hom(G,H) for the number of H‐colorings admitted by G, we conjecture that for any simple finite graph H (perhaps with loops) and any simple finite n‐vertex, d‐regular, loopless graph G, we have
hom(G,H)≤maxhom(Kd,d,H)n2d,hom(Kd+1,H)nd+1,where Kd,d is the complete bipartite graph with d vertices in each partition class, and Kd+1 is the complete graph on d+1 vertices.Results of Zhao confirm this conjecture for some choices of H for which the maximum is achieved by hom(Kd,d,H)n/2d. Here, we exhibit for the first time infinitely many nontrivial triples (n,d,H) for which the conjecture is true and for which the maximum is achieved by hom(Kd+1,H)n/(d+1).We also give sharp estimates for hom(Kd,d,H) and hom(Kd+1,H) in terms of some structural parameters of H. This allows us to characterize those H for which hom(Kd,d,H)1/2d is eventually (for all sufficiently large d) larger than hom(Kd+1,H)1/(d+1) and those for which it is eventually smaller, and to show that this dichotomy covers all nontrivial H. Our estimates also allow us to obtain asymptotic evidence for the conjecture in the following form. For fixed H, for all d‐regular G, we have
hom(G,H)1|V(G)|≤(1+o(1))maxhom(Kd,d,H)12d,hom(Kd+1,H)1d+1,where o(1)→0 as d→∞. More precise results are obtained in some special cases.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgt.21658</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9024 |
ispartof | Journal of graph theory, 2013-05, Vol.73 (1), p.66-84 |
issn | 0364-9024 1097-0118 |
language | eng |
recordid | cdi_proquest_journals_1365696694 |
source | Access via Wiley Online Library |
subjects | Algorithms graph coloring graph homomorphisms Studies |
title | Maximizing H-Colorings of a Regular Graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20H-Colorings%20of%20a%20Regular%20Graph&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Galvin,%20David&rft.date=2013-05&rft.volume=73&rft.issue=1&rft.spage=66&rft.epage=84&rft.pages=66-84&rft.issn=0364-9024&rft.eissn=1097-0118&rft.coden=JGTHDO&rft_id=info:doi/10.1002/jgt.21658&rft_dat=%3Cproquest_cross%3E2989948721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365696694&rft_id=info:pmid/&rfr_iscdi=true |