On multivariate extensions of Value-at-Risk

In this paper, we introduce two alternative extensions of the classical univariate Value-at-Risk (VaR) in a multivariate setting. The two proposed multivariate VaR are vector-valued measures with the same dimension as the underlying risk portfolio. The lower-orthant VaR is constructed from level set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2013-08, Vol.119, p.32-46
Hauptverfasser: Cousin, Areski, Di Bernardino, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue
container_start_page 32
container_title Journal of multivariate analysis
container_volume 119
creator Cousin, Areski
Di Bernardino, Elena
description In this paper, we introduce two alternative extensions of the classical univariate Value-at-Risk (VaR) in a multivariate setting. The two proposed multivariate VaR are vector-valued measures with the same dimension as the underlying risk portfolio. The lower-orthant VaR is constructed from level sets of multivariate distribution functions whereas the upper-orthant VaR is constructed from level sets of multivariate survival functions. Several properties have been derived. In particular, we show that both these risk measures satisfy the positive homogeneity and the translation invariance property. Comparisons between univariate risk measures and components of multivariate VaR are provided. We also analyze how these measures are impacted by a change in marginal distributions, by a change in dependence structure and by a change in risk level. Illustrations are given in the class of Archimedean copulas.
doi_str_mv 10.1016/j.jmva.2013.03.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1364804025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X13000432</els_id><sourcerecordid>2988089111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-86bb8d1a657d02dfec97d0376a910ad5c265be86bad1b677200c5dbecf5383603</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fj9I6SZqkBS-y-A8WFkTFW0iTKaTutmvSLvrtzbKehQczh9-beTxCLikUFKi86YpuszMFA8oLSKLyiMwo1CJXrOTHZAZQqpyJ-uOUnMXYAVAqVDkj16s-20zr0e9M8GbEDL9H7KMf-pgNbfZu1hPmZsxffPw8JyetWUe8-Jtz8vZw_7p4yperx-fF3TK3XLExr2TTVI4aKZQD5lq0dVq4kqamYJywTIoGE2UcbaRSDMAK16BtBa-4BD4nV4e72zB8TRhH3Q1T6NNLTbksKyiBiUSxA2XDEGPAVm-D35jwoynofSm60_tS9L4UDUlUJtPtwYQp_85j0NF67C06H9CO2g3-P_sv_9Jprw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1364804025</pqid></control><display><type>article</type><title>On multivariate extensions of Value-at-Risk</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cousin, Areski ; Di Bernardino, Elena</creator><creatorcontrib>Cousin, Areski ; Di Bernardino, Elena</creatorcontrib><description>In this paper, we introduce two alternative extensions of the classical univariate Value-at-Risk (VaR) in a multivariate setting. The two proposed multivariate VaR are vector-valued measures with the same dimension as the underlying risk portfolio. The lower-orthant VaR is constructed from level sets of multivariate distribution functions whereas the upper-orthant VaR is constructed from level sets of multivariate survival functions. Several properties have been derived. In particular, we show that both these risk measures satisfy the positive homogeneity and the translation invariance property. Comparisons between univariate risk measures and components of multivariate VaR are provided. We also analyze how these measures are impacted by a change in marginal distributions, by a change in dependence structure and by a change in risk level. Illustrations are given in the class of Archimedean copulas.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2013.03.016</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Copulas and dependence ; Level sets of distribution functions ; Mathematical functions ; Multivariate analysis ; Multivariate probability integral transformation ; Multivariate risk measures ; Probability distribution ; Risk assessment ; Stochastic orders ; Studies</subject><ispartof>Journal of multivariate analysis, 2013-08, Vol.119, p.32-46</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright Taylor &amp; Francis Group Aug 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-86bb8d1a657d02dfec97d0376a910ad5c265be86bad1b677200c5dbecf5383603</citedby><cites>FETCH-LOGICAL-c372t-86bb8d1a657d02dfec97d0376a910ad5c265be86bad1b677200c5dbecf5383603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0047259X13000432$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cousin, Areski</creatorcontrib><creatorcontrib>Di Bernardino, Elena</creatorcontrib><title>On multivariate extensions of Value-at-Risk</title><title>Journal of multivariate analysis</title><description>In this paper, we introduce two alternative extensions of the classical univariate Value-at-Risk (VaR) in a multivariate setting. The two proposed multivariate VaR are vector-valued measures with the same dimension as the underlying risk portfolio. The lower-orthant VaR is constructed from level sets of multivariate distribution functions whereas the upper-orthant VaR is constructed from level sets of multivariate survival functions. Several properties have been derived. In particular, we show that both these risk measures satisfy the positive homogeneity and the translation invariance property. Comparisons between univariate risk measures and components of multivariate VaR are provided. We also analyze how these measures are impacted by a change in marginal distributions, by a change in dependence structure and by a change in risk level. Illustrations are given in the class of Archimedean copulas.</description><subject>Copulas and dependence</subject><subject>Level sets of distribution functions</subject><subject>Mathematical functions</subject><subject>Multivariate analysis</subject><subject>Multivariate probability integral transformation</subject><subject>Multivariate risk measures</subject><subject>Probability distribution</subject><subject>Risk assessment</subject><subject>Stochastic orders</subject><subject>Studies</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fj9I6SZqkBS-y-A8WFkTFW0iTKaTutmvSLvrtzbKehQczh9-beTxCLikUFKi86YpuszMFA8oLSKLyiMwo1CJXrOTHZAZQqpyJ-uOUnMXYAVAqVDkj16s-20zr0e9M8GbEDL9H7KMf-pgNbfZu1hPmZsxffPw8JyetWUe8-Jtz8vZw_7p4yperx-fF3TK3XLExr2TTVI4aKZQD5lq0dVq4kqamYJywTIoGE2UcbaRSDMAK16BtBa-4BD4nV4e72zB8TRhH3Q1T6NNLTbksKyiBiUSxA2XDEGPAVm-D35jwoynofSm60_tS9L4UDUlUJtPtwYQp_85j0NF67C06H9CO2g3-P_sv_9Jprw</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Cousin, Areski</creator><creator>Di Bernardino, Elena</creator><general>Elsevier Inc</general><general>Taylor &amp; Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201308</creationdate><title>On multivariate extensions of Value-at-Risk</title><author>Cousin, Areski ; Di Bernardino, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-86bb8d1a657d02dfec97d0376a910ad5c265be86bad1b677200c5dbecf5383603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Copulas and dependence</topic><topic>Level sets of distribution functions</topic><topic>Mathematical functions</topic><topic>Multivariate analysis</topic><topic>Multivariate probability integral transformation</topic><topic>Multivariate risk measures</topic><topic>Probability distribution</topic><topic>Risk assessment</topic><topic>Stochastic orders</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cousin, Areski</creatorcontrib><creatorcontrib>Di Bernardino, Elena</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cousin, Areski</au><au>Di Bernardino, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On multivariate extensions of Value-at-Risk</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2013-08</date><risdate>2013</risdate><volume>119</volume><spage>32</spage><epage>46</epage><pages>32-46</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>In this paper, we introduce two alternative extensions of the classical univariate Value-at-Risk (VaR) in a multivariate setting. The two proposed multivariate VaR are vector-valued measures with the same dimension as the underlying risk portfolio. The lower-orthant VaR is constructed from level sets of multivariate distribution functions whereas the upper-orthant VaR is constructed from level sets of multivariate survival functions. Several properties have been derived. In particular, we show that both these risk measures satisfy the positive homogeneity and the translation invariance property. Comparisons between univariate risk measures and components of multivariate VaR are provided. We also analyze how these measures are impacted by a change in marginal distributions, by a change in dependence structure and by a change in risk level. Illustrations are given in the class of Archimedean copulas.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2013.03.016</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2013-08, Vol.119, p.32-46
issn 0047-259X
1095-7243
language eng
recordid cdi_proquest_journals_1364804025
source ScienceDirect Journals (5 years ago - present); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Copulas and dependence
Level sets of distribution functions
Mathematical functions
Multivariate analysis
Multivariate probability integral transformation
Multivariate risk measures
Probability distribution
Risk assessment
Stochastic orders
Studies
title On multivariate extensions of Value-at-Risk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20multivariate%20extensions%20of%20Value-at-Risk&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Cousin,%20Areski&rft.date=2013-08&rft.volume=119&rft.spage=32&rft.epage=46&rft.pages=32-46&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2013.03.016&rft_dat=%3Cproquest_cross%3E2988089111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1364804025&rft_id=info:pmid/&rft_els_id=S0047259X13000432&rfr_iscdi=true