Chaos at fifty
Until the 19th century, the tacit assumption had always been that approximate knowledge of the initial state implies approximate knowledge of the final state. Given their success describing the motion of the planets, comets, and stars and the dynamics of countless other systems, physicists had littl...
Gespeichert in:
Veröffentlicht in: | Physics today 2013-05, Vol.66 (5), p.27-33 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | 5 |
container_start_page | 27 |
container_title | Physics today |
container_volume | 66 |
creator | Motter, Adilson E. Campbell, David K. |
description | Until the 19th century, the tacit assumption had always been that approximate knowledge of the initial state implies approximate knowledge of the final state. Given their success describing the motion of the planets, comets, and stars and the dynamics of countless other systems, physicists had little reason to assume otherwise. Starting in the 19th century, however, and culminating with a 1963 paper by MIT meteorologist Edward Lorenz, a series of developments revealed that the notion of deterministic predictability although appealingly intuitive, is in practice false for most systems. Small uncertainties in an initial state can indeed become large errors in a final one. Even simple systems for which all forces are known can behave unpredictably. Determinism, surprisingly enough, doesn't preclude chaos. Here, Motter and Campbell provide more details on chaos theory. |
doi_str_mv | 10.1063/PT.3.1977 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1362282786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2986174261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-62142d68cc11356900cd5724b5c5be63c7f4b91fd7d569e92773fe98cf6cbf403</originalsourceid><addsrcrecordid>eNotjztPwzAUhS0EEqGAxD-oxMTg9F5fP-IRRRSQKrVDmK3EsUUrIMVOh_57UpXpDOfTeTD2gFAiaFpsmpJKtMZcsAKtVBy0tZesACDkVojqmt3kvAMACQILdl9_tkOet-M8buN4vGVXsf3K4e5fZ-xj-dLUb3y1fn2vn1fck6CRa4FS9LryHpGUtgC-V0bITnnVBU3eRNlZjL3pJzdYYQzFYCsfte-iBJqxx3PuPg2_h5BHtxsO6WeqdEh6milMpSfq6Uz5NOScQnT7tP1u09EhuNNdt2kcudNd-gNv90QU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1362282786</pqid></control><display><type>article</type><title>Chaos at fifty</title><source>AIP Journals Complete</source><creator>Motter, Adilson E. ; Campbell, David K.</creator><creatorcontrib>Motter, Adilson E. ; Campbell, David K.</creatorcontrib><description>Until the 19th century, the tacit assumption had always been that approximate knowledge of the initial state implies approximate knowledge of the final state. Given their success describing the motion of the planets, comets, and stars and the dynamics of countless other systems, physicists had little reason to assume otherwise. Starting in the 19th century, however, and culminating with a 1963 paper by MIT meteorologist Edward Lorenz, a series of developments revealed that the notion of deterministic predictability although appealingly intuitive, is in practice false for most systems. Small uncertainties in an initial state can indeed become large errors in a final one. Even simple systems for which all forces are known can behave unpredictably. Determinism, surprisingly enough, doesn't preclude chaos. Here, Motter and Campbell provide more details on chaos theory.</description><identifier>ISSN: 0031-9228</identifier><identifier>EISSN: 1945-0699</identifier><identifier>DOI: 10.1063/PT.3.1977</identifier><identifier>CODEN: PHTOAD</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Chaos theory ; Determinism ; Knowledge ; Lorenz, Edward Norton ; Science history</subject><ispartof>Physics today, 2013-05, Vol.66 (5), p.27-33</ispartof><rights>Copyright American Institute of Physics May 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-62142d68cc11356900cd5724b5c5be63c7f4b91fd7d569e92773fe98cf6cbf403</citedby><cites>FETCH-LOGICAL-c323t-62142d68cc11356900cd5724b5c5be63c7f4b91fd7d569e92773fe98cf6cbf403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Motter, Adilson E.</creatorcontrib><creatorcontrib>Campbell, David K.</creatorcontrib><title>Chaos at fifty</title><title>Physics today</title><description>Until the 19th century, the tacit assumption had always been that approximate knowledge of the initial state implies approximate knowledge of the final state. Given their success describing the motion of the planets, comets, and stars and the dynamics of countless other systems, physicists had little reason to assume otherwise. Starting in the 19th century, however, and culminating with a 1963 paper by MIT meteorologist Edward Lorenz, a series of developments revealed that the notion of deterministic predictability although appealingly intuitive, is in practice false for most systems. Small uncertainties in an initial state can indeed become large errors in a final one. Even simple systems for which all forces are known can behave unpredictably. Determinism, surprisingly enough, doesn't preclude chaos. Here, Motter and Campbell provide more details on chaos theory.</description><subject>Chaos theory</subject><subject>Determinism</subject><subject>Knowledge</subject><subject>Lorenz, Edward Norton</subject><subject>Science history</subject><issn>0031-9228</issn><issn>1945-0699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotjztPwzAUhS0EEqGAxD-oxMTg9F5fP-IRRRSQKrVDmK3EsUUrIMVOh_57UpXpDOfTeTD2gFAiaFpsmpJKtMZcsAKtVBy0tZesACDkVojqmt3kvAMACQILdl9_tkOet-M8buN4vGVXsf3K4e5fZ-xj-dLUb3y1fn2vn1fck6CRa4FS9LryHpGUtgC-V0bITnnVBU3eRNlZjL3pJzdYYQzFYCsfte-iBJqxx3PuPg2_h5BHtxsO6WeqdEh6milMpSfq6Uz5NOScQnT7tP1u09EhuNNdt2kcudNd-gNv90QU</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Motter, Adilson E.</creator><creator>Campbell, David K.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130501</creationdate><title>Chaos at fifty</title><author>Motter, Adilson E. ; Campbell, David K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-62142d68cc11356900cd5724b5c5be63c7f4b91fd7d569e92773fe98cf6cbf403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chaos theory</topic><topic>Determinism</topic><topic>Knowledge</topic><topic>Lorenz, Edward Norton</topic><topic>Science history</topic><toplevel>online_resources</toplevel><creatorcontrib>Motter, Adilson E.</creatorcontrib><creatorcontrib>Campbell, David K.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics today</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motter, Adilson E.</au><au>Campbell, David K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaos at fifty</atitle><jtitle>Physics today</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>66</volume><issue>5</issue><spage>27</spage><epage>33</epage><pages>27-33</pages><issn>0031-9228</issn><eissn>1945-0699</eissn><coden>PHTOAD</coden><abstract>Until the 19th century, the tacit assumption had always been that approximate knowledge of the initial state implies approximate knowledge of the final state. Given their success describing the motion of the planets, comets, and stars and the dynamics of countless other systems, physicists had little reason to assume otherwise. Starting in the 19th century, however, and culminating with a 1963 paper by MIT meteorologist Edward Lorenz, a series of developments revealed that the notion of deterministic predictability although appealingly intuitive, is in practice false for most systems. Small uncertainties in an initial state can indeed become large errors in a final one. Even simple systems for which all forces are known can behave unpredictably. Determinism, surprisingly enough, doesn't preclude chaos. Here, Motter and Campbell provide more details on chaos theory.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/PT.3.1977</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9228 |
ispartof | Physics today, 2013-05, Vol.66 (5), p.27-33 |
issn | 0031-9228 1945-0699 |
language | eng |
recordid | cdi_proquest_journals_1362282786 |
source | AIP Journals Complete |
subjects | Chaos theory Determinism Knowledge Lorenz, Edward Norton Science history |
title | Chaos at fifty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaos%20at%20fifty&rft.jtitle=Physics%20today&rft.au=Motter,%20Adilson%20E.&rft.date=2013-05-01&rft.volume=66&rft.issue=5&rft.spage=27&rft.epage=33&rft.pages=27-33&rft.issn=0031-9228&rft.eissn=1945-0699&rft.coden=PHTOAD&rft_id=info:doi/10.1063/PT.3.1977&rft_dat=%3Cproquest_cross%3E2986174261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1362282786&rft_id=info:pmid/&rfr_iscdi=true |