Chaos at fifty

Until the 19th century, the tacit assumption had always been that approximate knowledge of the initial state implies approximate knowledge of the final state. Given their success describing the motion of the planets, comets, and stars and the dynamics of countless other systems, physicists had littl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics today 2013-05, Vol.66 (5), p.27-33
Hauptverfasser: Motter, Adilson E., Campbell, David K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 5
container_start_page 27
container_title Physics today
container_volume 66
creator Motter, Adilson E.
Campbell, David K.
description Until the 19th century, the tacit assumption had always been that approximate knowledge of the initial state implies approximate knowledge of the final state. Given their success describing the motion of the planets, comets, and stars and the dynamics of countless other systems, physicists had little reason to assume otherwise. Starting in the 19th century, however, and culminating with a 1963 paper by MIT meteorologist Edward Lorenz, a series of developments revealed that the notion of deterministic predictability although appealingly intuitive, is in practice false for most systems. Small uncertainties in an initial state can indeed become large errors in a final one. Even simple systems for which all forces are known can behave unpredictably. Determinism, surprisingly enough, doesn't preclude chaos. Here, Motter and Campbell provide more details on chaos theory.
doi_str_mv 10.1063/PT.3.1977
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1362282786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2986174261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-62142d68cc11356900cd5724b5c5be63c7f4b91fd7d569e92773fe98cf6cbf403</originalsourceid><addsrcrecordid>eNotjztPwzAUhS0EEqGAxD-oxMTg9F5fP-IRRRSQKrVDmK3EsUUrIMVOh_57UpXpDOfTeTD2gFAiaFpsmpJKtMZcsAKtVBy0tZesACDkVojqmt3kvAMACQILdl9_tkOet-M8buN4vGVXsf3K4e5fZ-xj-dLUb3y1fn2vn1fck6CRa4FS9LryHpGUtgC-V0bITnnVBU3eRNlZjL3pJzdYYQzFYCsfte-iBJqxx3PuPg2_h5BHtxsO6WeqdEh6milMpSfq6Uz5NOScQnT7tP1u09EhuNNdt2kcudNd-gNv90QU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1362282786</pqid></control><display><type>article</type><title>Chaos at fifty</title><source>AIP Journals Complete</source><creator>Motter, Adilson E. ; Campbell, David K.</creator><creatorcontrib>Motter, Adilson E. ; Campbell, David K.</creatorcontrib><description>Until the 19th century, the tacit assumption had always been that approximate knowledge of the initial state implies approximate knowledge of the final state. Given their success describing the motion of the planets, comets, and stars and the dynamics of countless other systems, physicists had little reason to assume otherwise. Starting in the 19th century, however, and culminating with a 1963 paper by MIT meteorologist Edward Lorenz, a series of developments revealed that the notion of deterministic predictability although appealingly intuitive, is in practice false for most systems. Small uncertainties in an initial state can indeed become large errors in a final one. Even simple systems for which all forces are known can behave unpredictably. Determinism, surprisingly enough, doesn't preclude chaos. Here, Motter and Campbell provide more details on chaos theory.</description><identifier>ISSN: 0031-9228</identifier><identifier>EISSN: 1945-0699</identifier><identifier>DOI: 10.1063/PT.3.1977</identifier><identifier>CODEN: PHTOAD</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Chaos theory ; Determinism ; Knowledge ; Lorenz, Edward Norton ; Science history</subject><ispartof>Physics today, 2013-05, Vol.66 (5), p.27-33</ispartof><rights>Copyright American Institute of Physics May 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-62142d68cc11356900cd5724b5c5be63c7f4b91fd7d569e92773fe98cf6cbf403</citedby><cites>FETCH-LOGICAL-c323t-62142d68cc11356900cd5724b5c5be63c7f4b91fd7d569e92773fe98cf6cbf403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Motter, Adilson E.</creatorcontrib><creatorcontrib>Campbell, David K.</creatorcontrib><title>Chaos at fifty</title><title>Physics today</title><description>Until the 19th century, the tacit assumption had always been that approximate knowledge of the initial state implies approximate knowledge of the final state. Given their success describing the motion of the planets, comets, and stars and the dynamics of countless other systems, physicists had little reason to assume otherwise. Starting in the 19th century, however, and culminating with a 1963 paper by MIT meteorologist Edward Lorenz, a series of developments revealed that the notion of deterministic predictability although appealingly intuitive, is in practice false for most systems. Small uncertainties in an initial state can indeed become large errors in a final one. Even simple systems for which all forces are known can behave unpredictably. Determinism, surprisingly enough, doesn't preclude chaos. Here, Motter and Campbell provide more details on chaos theory.</description><subject>Chaos theory</subject><subject>Determinism</subject><subject>Knowledge</subject><subject>Lorenz, Edward Norton</subject><subject>Science history</subject><issn>0031-9228</issn><issn>1945-0699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotjztPwzAUhS0EEqGAxD-oxMTg9F5fP-IRRRSQKrVDmK3EsUUrIMVOh_57UpXpDOfTeTD2gFAiaFpsmpJKtMZcsAKtVBy0tZesACDkVojqmt3kvAMACQILdl9_tkOet-M8buN4vGVXsf3K4e5fZ-xj-dLUb3y1fn2vn1fck6CRa4FS9LryHpGUtgC-V0bITnnVBU3eRNlZjL3pJzdYYQzFYCsfte-iBJqxx3PuPg2_h5BHtxsO6WeqdEh6milMpSfq6Uz5NOScQnT7tP1u09EhuNNdt2kcudNd-gNv90QU</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Motter, Adilson E.</creator><creator>Campbell, David K.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130501</creationdate><title>Chaos at fifty</title><author>Motter, Adilson E. ; Campbell, David K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-62142d68cc11356900cd5724b5c5be63c7f4b91fd7d569e92773fe98cf6cbf403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chaos theory</topic><topic>Determinism</topic><topic>Knowledge</topic><topic>Lorenz, Edward Norton</topic><topic>Science history</topic><toplevel>online_resources</toplevel><creatorcontrib>Motter, Adilson E.</creatorcontrib><creatorcontrib>Campbell, David K.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics today</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motter, Adilson E.</au><au>Campbell, David K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaos at fifty</atitle><jtitle>Physics today</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>66</volume><issue>5</issue><spage>27</spage><epage>33</epage><pages>27-33</pages><issn>0031-9228</issn><eissn>1945-0699</eissn><coden>PHTOAD</coden><abstract>Until the 19th century, the tacit assumption had always been that approximate knowledge of the initial state implies approximate knowledge of the final state. Given their success describing the motion of the planets, comets, and stars and the dynamics of countless other systems, physicists had little reason to assume otherwise. Starting in the 19th century, however, and culminating with a 1963 paper by MIT meteorologist Edward Lorenz, a series of developments revealed that the notion of deterministic predictability although appealingly intuitive, is in practice false for most systems. Small uncertainties in an initial state can indeed become large errors in a final one. Even simple systems for which all forces are known can behave unpredictably. Determinism, surprisingly enough, doesn't preclude chaos. Here, Motter and Campbell provide more details on chaos theory.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/PT.3.1977</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9228
ispartof Physics today, 2013-05, Vol.66 (5), p.27-33
issn 0031-9228
1945-0699
language eng
recordid cdi_proquest_journals_1362282786
source AIP Journals Complete
subjects Chaos theory
Determinism
Knowledge
Lorenz, Edward Norton
Science history
title Chaos at fifty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaos%20at%20fifty&rft.jtitle=Physics%20today&rft.au=Motter,%20Adilson%20E.&rft.date=2013-05-01&rft.volume=66&rft.issue=5&rft.spage=27&rft.epage=33&rft.pages=27-33&rft.issn=0031-9228&rft.eissn=1945-0699&rft.coden=PHTOAD&rft_id=info:doi/10.1063/PT.3.1977&rft_dat=%3Cproquest_cross%3E2986174261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1362282786&rft_id=info:pmid/&rfr_iscdi=true