Real-Time Coding With Limited Lookahead
A real-time coding system with lookahead consists of a memoryless source, a memoryless channel, an encoder, which encodes the source symbols sequentially with knowledge of future source symbols up to a fixed finite lookahead d , with or without feedback of the past channel output symbols and a decod...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2013-06, Vol.59 (6), p.3582-3606 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3606 |
---|---|
container_issue | 6 |
container_start_page | 3582 |
container_title | IEEE transactions on information theory |
container_volume | 59 |
creator | Asnani, Himanshu Weissman, Tsachy |
description | A real-time coding system with lookahead consists of a memoryless source, a memoryless channel, an encoder, which encodes the source symbols sequentially with knowledge of future source symbols up to a fixed finite lookahead d , with or without feedback of the past channel output symbols and a decoder, which sequentially constructs the source symbols using the channel output. The objective is to minimize the expected per-symbol distortion. For a fixed finite lookahead d\geq 1 , we invoke the theory of controlled Markov chains to obtain an average cost optimality equation (ACOE), the solution of which, denoted by D(d) , is the minimum expected per-symbol distortion. With increasing d , D(d) bridges the gap between causal encoding, d=0 , where symbol-by-symbol encoding-decoding is optimal and the infinite lookahead case, d=\infty , where Shannon Theoretic arguments show that separation is optimal. We extend the analysis to a system with finite-state decoders, with or without noise-free feedback. For a Bernoulli source and binary symmetric channel, under Hamming loss, we compute the optimal distortion for various source and channel parameters, and thus obtain computable bounds on D(d) . We also identify regions of source and channel parameters where symbol-by-symbol encoding-decoding is suboptimal. Finally, we demonstrate the wide applicability of our approach by applying it in additional coding scenarios, such as the case where the sequential decoder can take cost-constrained actions affecting the quality or availability of side information about the source. |
doi_str_mv | 10.1109/TIT.2013.2245396 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1355547715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6451267</ieee_id><sourcerecordid>2980469861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-6ea808ea4f8acc727236882967eaf755ad87217f3cfe8b87a9805eacc08d1f4f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuCiKetmXzvUYofhQVBVjyGuDuxqW23JtuD_96Ulp6GYZ73HXgIuQY6AaDVQzNrJowCnzAmJK_UCRmBlLqslBSnZEQpmLISwpyTi5QWeRUS2Ijcv6Nblk1YYTHtu7D-Lj7DMC_qsAoDdkXd9z9ujq67JGfeLRNeHeaYfDw_NdPXsn57mU0f67Llig-lQmeoQSe8cW2rmWZcGcMqpdF5LaXrjGagPW89mi-jXWWoxIxS04EXno_J7b53E_vfLabBLvptXOeXFriUUmgNMlN0T7WxTymit5sYVi7-WaB2p8NmHXanwx505Mjdodil1i19dOs2pGOOaUGBasjczZ4LiHg8q50tpfk_NvhmGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355547715</pqid></control><display><type>article</type><title>Real-Time Coding With Limited Lookahead</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Asnani, Himanshu ; Weissman, Tsachy</creator><creatorcontrib>Asnani, Himanshu ; Weissman, Tsachy</creatorcontrib><description>A real-time coding system with lookahead consists of a memoryless source, a memoryless channel, an encoder, which encodes the source symbols sequentially with knowledge of future source symbols up to a fixed finite lookahead d , with or without feedback of the past channel output symbols and a decoder, which sequentially constructs the source symbols using the channel output. The objective is to minimize the expected per-symbol distortion. For a fixed finite lookahead d\geq 1 , we invoke the theory of controlled Markov chains to obtain an average cost optimality equation (ACOE), the solution of which, denoted by D(d) , is the minimum expected per-symbol distortion. With increasing d , D(d) bridges the gap between causal encoding, d=0 , where symbol-by-symbol encoding-decoding is optimal and the infinite lookahead case, d=\infty , where Shannon Theoretic arguments show that separation is optimal. We extend the analysis to a system with finite-state decoders, with or without noise-free feedback. For a Bernoulli source and binary symmetric channel, under Hamming loss, we compute the optimal distortion for various source and channel parameters, and thus obtain computable bounds on D(d) . We also identify regions of source and channel parameters where symbol-by-symbol encoding-decoding is suboptimal. Finally, we demonstrate the wide applicability of our approach by applying it in additional coding scenarios, such as the case where the sequential decoder can take cost-constrained actions affecting the quality or availability of side information about the source.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2013.2245396</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actions ; Algorithms ; Applied sciences ; average cost optimality equation (ACOE) ; beliefs ; Bellman equation ; Bernoulli Hypothesis ; Channel coding ; Coding theory ; Coding, codes ; constrained Markov decision process ; controlled Markov chains ; Decoding ; Equations ; Exact sciences and technology ; expected average distortion ; finite-state decoders ; Information theory ; Information, signal and communications theory ; Lagrangian ; lookahead ; Markov analysis ; Markov processes ; Mathematical model ; optimal cost ; policy ; Real time ; Real-time systems ; side information ; Signal and communications theory ; Telecommunications and information theory ; value iteration ; vending machine</subject><ispartof>IEEE transactions on information theory, 2013-06, Vol.59 (6), p.3582-3606</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-6ea808ea4f8acc727236882967eaf755ad87217f3cfe8b87a9805eacc08d1f4f3</citedby><cites>FETCH-LOGICAL-c363t-6ea808ea4f8acc727236882967eaf755ad87217f3cfe8b87a9805eacc08d1f4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6451267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6451267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27401071$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Asnani, Himanshu</creatorcontrib><creatorcontrib>Weissman, Tsachy</creatorcontrib><title>Real-Time Coding With Limited Lookahead</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A real-time coding system with lookahead consists of a memoryless source, a memoryless channel, an encoder, which encodes the source symbols sequentially with knowledge of future source symbols up to a fixed finite lookahead d , with or without feedback of the past channel output symbols and a decoder, which sequentially constructs the source symbols using the channel output. The objective is to minimize the expected per-symbol distortion. For a fixed finite lookahead d\geq 1 , we invoke the theory of controlled Markov chains to obtain an average cost optimality equation (ACOE), the solution of which, denoted by D(d) , is the minimum expected per-symbol distortion. With increasing d , D(d) bridges the gap between causal encoding, d=0 , where symbol-by-symbol encoding-decoding is optimal and the infinite lookahead case, d=\infty , where Shannon Theoretic arguments show that separation is optimal. We extend the analysis to a system with finite-state decoders, with or without noise-free feedback. For a Bernoulli source and binary symmetric channel, under Hamming loss, we compute the optimal distortion for various source and channel parameters, and thus obtain computable bounds on D(d) . We also identify regions of source and channel parameters where symbol-by-symbol encoding-decoding is suboptimal. Finally, we demonstrate the wide applicability of our approach by applying it in additional coding scenarios, such as the case where the sequential decoder can take cost-constrained actions affecting the quality or availability of side information about the source.</description><subject>Actions</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>average cost optimality equation (ACOE)</subject><subject>beliefs</subject><subject>Bellman equation</subject><subject>Bernoulli Hypothesis</subject><subject>Channel coding</subject><subject>Coding theory</subject><subject>Coding, codes</subject><subject>constrained Markov decision process</subject><subject>controlled Markov chains</subject><subject>Decoding</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>expected average distortion</subject><subject>finite-state decoders</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Lagrangian</subject><subject>lookahead</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mathematical model</subject><subject>optimal cost</subject><subject>policy</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>side information</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><subject>value iteration</subject><subject>vending machine</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuCiKetmXzvUYofhQVBVjyGuDuxqW23JtuD_96Ulp6GYZ73HXgIuQY6AaDVQzNrJowCnzAmJK_UCRmBlLqslBSnZEQpmLISwpyTi5QWeRUS2Ijcv6Nblk1YYTHtu7D-Lj7DMC_qsAoDdkXd9z9ujq67JGfeLRNeHeaYfDw_NdPXsn57mU0f67Llig-lQmeoQSe8cW2rmWZcGcMqpdF5LaXrjGagPW89mi-jXWWoxIxS04EXno_J7b53E_vfLabBLvptXOeXFriUUmgNMlN0T7WxTymit5sYVi7-WaB2p8NmHXanwx505Mjdodil1i19dOs2pGOOaUGBasjczZ4LiHg8q50tpfk_NvhmGA</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Asnani, Himanshu</creator><creator>Weissman, Tsachy</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130601</creationdate><title>Real-Time Coding With Limited Lookahead</title><author>Asnani, Himanshu ; Weissman, Tsachy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-6ea808ea4f8acc727236882967eaf755ad87217f3cfe8b87a9805eacc08d1f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actions</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>average cost optimality equation (ACOE)</topic><topic>beliefs</topic><topic>Bellman equation</topic><topic>Bernoulli Hypothesis</topic><topic>Channel coding</topic><topic>Coding theory</topic><topic>Coding, codes</topic><topic>constrained Markov decision process</topic><topic>controlled Markov chains</topic><topic>Decoding</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>expected average distortion</topic><topic>finite-state decoders</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Lagrangian</topic><topic>lookahead</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mathematical model</topic><topic>optimal cost</topic><topic>policy</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>side information</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><topic>value iteration</topic><topic>vending machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asnani, Himanshu</creatorcontrib><creatorcontrib>Weissman, Tsachy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asnani, Himanshu</au><au>Weissman, Tsachy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Coding With Limited Lookahead</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>59</volume><issue>6</issue><spage>3582</spage><epage>3606</epage><pages>3582-3606</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A real-time coding system with lookahead consists of a memoryless source, a memoryless channel, an encoder, which encodes the source symbols sequentially with knowledge of future source symbols up to a fixed finite lookahead d , with or without feedback of the past channel output symbols and a decoder, which sequentially constructs the source symbols using the channel output. The objective is to minimize the expected per-symbol distortion. For a fixed finite lookahead d\geq 1 , we invoke the theory of controlled Markov chains to obtain an average cost optimality equation (ACOE), the solution of which, denoted by D(d) , is the minimum expected per-symbol distortion. With increasing d , D(d) bridges the gap between causal encoding, d=0 , where symbol-by-symbol encoding-decoding is optimal and the infinite lookahead case, d=\infty , where Shannon Theoretic arguments show that separation is optimal. We extend the analysis to a system with finite-state decoders, with or without noise-free feedback. For a Bernoulli source and binary symmetric channel, under Hamming loss, we compute the optimal distortion for various source and channel parameters, and thus obtain computable bounds on D(d) . We also identify regions of source and channel parameters where symbol-by-symbol encoding-decoding is suboptimal. Finally, we demonstrate the wide applicability of our approach by applying it in additional coding scenarios, such as the case where the sequential decoder can take cost-constrained actions affecting the quality or availability of side information about the source.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2013.2245396</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2013-06, Vol.59 (6), p.3582-3606 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_1355547715 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Actions Algorithms Applied sciences average cost optimality equation (ACOE) beliefs Bellman equation Bernoulli Hypothesis Channel coding Coding theory Coding, codes constrained Markov decision process controlled Markov chains Decoding Equations Exact sciences and technology expected average distortion finite-state decoders Information theory Information, signal and communications theory Lagrangian lookahead Markov analysis Markov processes Mathematical model optimal cost policy Real time Real-time systems side information Signal and communications theory Telecommunications and information theory value iteration vending machine |
title | Real-Time Coding With Limited Lookahead |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A42%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Coding%20With%20Limited%20Lookahead&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Asnani,%20Himanshu&rft.date=2013-06-01&rft.volume=59&rft.issue=6&rft.spage=3582&rft.epage=3606&rft.pages=3582-3606&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2013.2245396&rft_dat=%3Cproquest_RIE%3E2980469861%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1355547715&rft_id=info:pmid/&rft_ieee_id=6451267&rfr_iscdi=true |