Real-Time Coding With Limited Lookahead

A real-time coding system with lookahead consists of a memoryless source, a memoryless channel, an encoder, which encodes the source symbols sequentially with knowledge of future source symbols up to a fixed finite lookahead d , with or without feedback of the past channel output symbols and a decod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2013-06, Vol.59 (6), p.3582-3606
Hauptverfasser: Asnani, Himanshu, Weissman, Tsachy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3606
container_issue 6
container_start_page 3582
container_title IEEE transactions on information theory
container_volume 59
creator Asnani, Himanshu
Weissman, Tsachy
description A real-time coding system with lookahead consists of a memoryless source, a memoryless channel, an encoder, which encodes the source symbols sequentially with knowledge of future source symbols up to a fixed finite lookahead d , with or without feedback of the past channel output symbols and a decoder, which sequentially constructs the source symbols using the channel output. The objective is to minimize the expected per-symbol distortion. For a fixed finite lookahead d\geq 1 , we invoke the theory of controlled Markov chains to obtain an average cost optimality equation (ACOE), the solution of which, denoted by D(d) , is the minimum expected per-symbol distortion. With increasing d , D(d) bridges the gap between causal encoding, d=0 , where symbol-by-symbol encoding-decoding is optimal and the infinite lookahead case, d=\infty , where Shannon Theoretic arguments show that separation is optimal. We extend the analysis to a system with finite-state decoders, with or without noise-free feedback. For a Bernoulli source and binary symmetric channel, under Hamming loss, we compute the optimal distortion for various source and channel parameters, and thus obtain computable bounds on D(d) . We also identify regions of source and channel parameters where symbol-by-symbol encoding-decoding is suboptimal. Finally, we demonstrate the wide applicability of our approach by applying it in additional coding scenarios, such as the case where the sequential decoder can take cost-constrained actions affecting the quality or availability of side information about the source.
doi_str_mv 10.1109/TIT.2013.2245396
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1355547715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6451267</ieee_id><sourcerecordid>2980469861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-6ea808ea4f8acc727236882967eaf755ad87217f3cfe8b87a9805eacc08d1f4f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuCiKetmXzvUYofhQVBVjyGuDuxqW23JtuD_96Ulp6GYZ73HXgIuQY6AaDVQzNrJowCnzAmJK_UCRmBlLqslBSnZEQpmLISwpyTi5QWeRUS2Ijcv6Nblk1YYTHtu7D-Lj7DMC_qsAoDdkXd9z9ujq67JGfeLRNeHeaYfDw_NdPXsn57mU0f67Llig-lQmeoQSe8cW2rmWZcGcMqpdF5LaXrjGagPW89mi-jXWWoxIxS04EXno_J7b53E_vfLabBLvptXOeXFriUUmgNMlN0T7WxTymit5sYVi7-WaB2p8NmHXanwx505Mjdodil1i19dOs2pGOOaUGBasjczZ4LiHg8q50tpfk_NvhmGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355547715</pqid></control><display><type>article</type><title>Real-Time Coding With Limited Lookahead</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Asnani, Himanshu ; Weissman, Tsachy</creator><creatorcontrib>Asnani, Himanshu ; Weissman, Tsachy</creatorcontrib><description>A real-time coding system with lookahead consists of a memoryless source, a memoryless channel, an encoder, which encodes the source symbols sequentially with knowledge of future source symbols up to a fixed finite lookahead d , with or without feedback of the past channel output symbols and a decoder, which sequentially constructs the source symbols using the channel output. The objective is to minimize the expected per-symbol distortion. For a fixed finite lookahead d\geq 1 , we invoke the theory of controlled Markov chains to obtain an average cost optimality equation (ACOE), the solution of which, denoted by D(d) , is the minimum expected per-symbol distortion. With increasing d , D(d) bridges the gap between causal encoding, d=0 , where symbol-by-symbol encoding-decoding is optimal and the infinite lookahead case, d=\infty , where Shannon Theoretic arguments show that separation is optimal. We extend the analysis to a system with finite-state decoders, with or without noise-free feedback. For a Bernoulli source and binary symmetric channel, under Hamming loss, we compute the optimal distortion for various source and channel parameters, and thus obtain computable bounds on D(d) . We also identify regions of source and channel parameters where symbol-by-symbol encoding-decoding is suboptimal. Finally, we demonstrate the wide applicability of our approach by applying it in additional coding scenarios, such as the case where the sequential decoder can take cost-constrained actions affecting the quality or availability of side information about the source.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2013.2245396</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actions ; Algorithms ; Applied sciences ; average cost optimality equation (ACOE) ; beliefs ; Bellman equation ; Bernoulli Hypothesis ; Channel coding ; Coding theory ; Coding, codes ; constrained Markov decision process ; controlled Markov chains ; Decoding ; Equations ; Exact sciences and technology ; expected average distortion ; finite-state decoders ; Information theory ; Information, signal and communications theory ; Lagrangian ; lookahead ; Markov analysis ; Markov processes ; Mathematical model ; optimal cost ; policy ; Real time ; Real-time systems ; side information ; Signal and communications theory ; Telecommunications and information theory ; value iteration ; vending machine</subject><ispartof>IEEE transactions on information theory, 2013-06, Vol.59 (6), p.3582-3606</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-6ea808ea4f8acc727236882967eaf755ad87217f3cfe8b87a9805eacc08d1f4f3</citedby><cites>FETCH-LOGICAL-c363t-6ea808ea4f8acc727236882967eaf755ad87217f3cfe8b87a9805eacc08d1f4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6451267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6451267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27401071$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Asnani, Himanshu</creatorcontrib><creatorcontrib>Weissman, Tsachy</creatorcontrib><title>Real-Time Coding With Limited Lookahead</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A real-time coding system with lookahead consists of a memoryless source, a memoryless channel, an encoder, which encodes the source symbols sequentially with knowledge of future source symbols up to a fixed finite lookahead d , with or without feedback of the past channel output symbols and a decoder, which sequentially constructs the source symbols using the channel output. The objective is to minimize the expected per-symbol distortion. For a fixed finite lookahead d\geq 1 , we invoke the theory of controlled Markov chains to obtain an average cost optimality equation (ACOE), the solution of which, denoted by D(d) , is the minimum expected per-symbol distortion. With increasing d , D(d) bridges the gap between causal encoding, d=0 , where symbol-by-symbol encoding-decoding is optimal and the infinite lookahead case, d=\infty , where Shannon Theoretic arguments show that separation is optimal. We extend the analysis to a system with finite-state decoders, with or without noise-free feedback. For a Bernoulli source and binary symmetric channel, under Hamming loss, we compute the optimal distortion for various source and channel parameters, and thus obtain computable bounds on D(d) . We also identify regions of source and channel parameters where symbol-by-symbol encoding-decoding is suboptimal. Finally, we demonstrate the wide applicability of our approach by applying it in additional coding scenarios, such as the case where the sequential decoder can take cost-constrained actions affecting the quality or availability of side information about the source.</description><subject>Actions</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>average cost optimality equation (ACOE)</subject><subject>beliefs</subject><subject>Bellman equation</subject><subject>Bernoulli Hypothesis</subject><subject>Channel coding</subject><subject>Coding theory</subject><subject>Coding, codes</subject><subject>constrained Markov decision process</subject><subject>controlled Markov chains</subject><subject>Decoding</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>expected average distortion</subject><subject>finite-state decoders</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Lagrangian</subject><subject>lookahead</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mathematical model</subject><subject>optimal cost</subject><subject>policy</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>side information</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><subject>value iteration</subject><subject>vending machine</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuCiKetmXzvUYofhQVBVjyGuDuxqW23JtuD_96Ulp6GYZ73HXgIuQY6AaDVQzNrJowCnzAmJK_UCRmBlLqslBSnZEQpmLISwpyTi5QWeRUS2Ijcv6Nblk1YYTHtu7D-Lj7DMC_qsAoDdkXd9z9ujq67JGfeLRNeHeaYfDw_NdPXsn57mU0f67Llig-lQmeoQSe8cW2rmWZcGcMqpdF5LaXrjGagPW89mi-jXWWoxIxS04EXno_J7b53E_vfLabBLvptXOeXFriUUmgNMlN0T7WxTymit5sYVi7-WaB2p8NmHXanwx505Mjdodil1i19dOs2pGOOaUGBasjczZ4LiHg8q50tpfk_NvhmGA</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Asnani, Himanshu</creator><creator>Weissman, Tsachy</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130601</creationdate><title>Real-Time Coding With Limited Lookahead</title><author>Asnani, Himanshu ; Weissman, Tsachy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-6ea808ea4f8acc727236882967eaf755ad87217f3cfe8b87a9805eacc08d1f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actions</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>average cost optimality equation (ACOE)</topic><topic>beliefs</topic><topic>Bellman equation</topic><topic>Bernoulli Hypothesis</topic><topic>Channel coding</topic><topic>Coding theory</topic><topic>Coding, codes</topic><topic>constrained Markov decision process</topic><topic>controlled Markov chains</topic><topic>Decoding</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>expected average distortion</topic><topic>finite-state decoders</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Lagrangian</topic><topic>lookahead</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mathematical model</topic><topic>optimal cost</topic><topic>policy</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>side information</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><topic>value iteration</topic><topic>vending machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asnani, Himanshu</creatorcontrib><creatorcontrib>Weissman, Tsachy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asnani, Himanshu</au><au>Weissman, Tsachy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Coding With Limited Lookahead</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>59</volume><issue>6</issue><spage>3582</spage><epage>3606</epage><pages>3582-3606</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A real-time coding system with lookahead consists of a memoryless source, a memoryless channel, an encoder, which encodes the source symbols sequentially with knowledge of future source symbols up to a fixed finite lookahead d , with or without feedback of the past channel output symbols and a decoder, which sequentially constructs the source symbols using the channel output. The objective is to minimize the expected per-symbol distortion. For a fixed finite lookahead d\geq 1 , we invoke the theory of controlled Markov chains to obtain an average cost optimality equation (ACOE), the solution of which, denoted by D(d) , is the minimum expected per-symbol distortion. With increasing d , D(d) bridges the gap between causal encoding, d=0 , where symbol-by-symbol encoding-decoding is optimal and the infinite lookahead case, d=\infty , where Shannon Theoretic arguments show that separation is optimal. We extend the analysis to a system with finite-state decoders, with or without noise-free feedback. For a Bernoulli source and binary symmetric channel, under Hamming loss, we compute the optimal distortion for various source and channel parameters, and thus obtain computable bounds on D(d) . We also identify regions of source and channel parameters where symbol-by-symbol encoding-decoding is suboptimal. Finally, we demonstrate the wide applicability of our approach by applying it in additional coding scenarios, such as the case where the sequential decoder can take cost-constrained actions affecting the quality or availability of side information about the source.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2013.2245396</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2013-06, Vol.59 (6), p.3582-3606
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_1355547715
source IEEE/IET Electronic Library (IEL)
subjects Actions
Algorithms
Applied sciences
average cost optimality equation (ACOE)
beliefs
Bellman equation
Bernoulli Hypothesis
Channel coding
Coding theory
Coding, codes
constrained Markov decision process
controlled Markov chains
Decoding
Equations
Exact sciences and technology
expected average distortion
finite-state decoders
Information theory
Information, signal and communications theory
Lagrangian
lookahead
Markov analysis
Markov processes
Mathematical model
optimal cost
policy
Real time
Real-time systems
side information
Signal and communications theory
Telecommunications and information theory
value iteration
vending machine
title Real-Time Coding With Limited Lookahead
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A42%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Coding%20With%20Limited%20Lookahead&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Asnani,%20Himanshu&rft.date=2013-06-01&rft.volume=59&rft.issue=6&rft.spage=3582&rft.epage=3606&rft.pages=3582-3606&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2013.2245396&rft_dat=%3Cproquest_RIE%3E2980469861%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1355547715&rft_id=info:pmid/&rft_ieee_id=6451267&rfr_iscdi=true